摘要:目的细粒度图像分类是指对一个大类别进行更细致的子类划分,如区分鸟的种类、车的品牌款式、狗的品种等。针对细粒度图像分类中的无关信息太多和背景干扰问题,本文利用深度卷积网络构建了细粒度图像聚焦—识别的联合学习框架,通过去除背景、突出待识别目标、自动定位有区分度的区域,从而提高细粒度图像分类识别率。方法首先基于Yolov2(youonly look once v2)的网络快速检测出目标物体,消除背景干扰和无关信息对分类结果的影响,实现聚焦判别性区域,之后将检测到的物体(即Yolov2的输出)输入双线性卷积神经网络进行训练和分类。此网络框架可以实现端到端的训练,且只依赖于类别标注信息,而无需借助其他的人工标注信息。结果在细粒度图像库CUB-200-2011、Cars196和Aircrafts100上进行实验验证,本文模型的分类精度分别达到84.5%、92%和88.4%,与同类型分类算法得到的最高分类精度相比,准确度分别提升了0.4%、0.7%和3.9%,比使用两个相同D(dence)-Net网络的方法分别高出0.5%、1.4%和4.5%。结论使用聚焦—识别深度学习框架提取有区分度的区域对细粒度图像分类有积极作用,能够滤除大部分对细粒度图像分类没有贡献的区域,使得网络能够学习到更多有利于细粒度图像分类的特征,从而降低背景干扰对分类结果的影响,提高模型的识别率。
摘要:目的哈希检索旨在将海量数据空间中的高维数据映射为紧凑的二进制哈希码,并通过位运算和异或运算快速计算任意两个二进制哈希码之间的汉明距离,从而能够在保持相似性的条件下,有效实现对大数据保持相似性的检索。但是,遥感影像数据除了具有影像特征之外,还具有丰富的语义信息,传统哈希提取影像特征并生成哈希码的方法不能有效利用遥感影像包含的语义信息,从而限制了遥感影像检索的精度。针对遥感影像中的语义信息,提出了一种基于深度语义哈希的遥感影像检索方法。方法首先在具有多语义标签的遥感影像数据训练集的基础上,利用两个不同配置参数的深度卷积网络分别提取遥感影像的影像特征和语义特征,然后利用后向传播算法针对提取的两类特征学习出深度网络中的各项参数并生成遥感影像的二进制哈希码。生成的二进制哈希码之间能够有效保持原始高维遥感影像的相似性。结果在高分二号与谷歌地球遥感影像数据集、CIFAR-10数据集及FLICKR-25K数据集上进行实验,并与多种方法进行比较和分析。当编码位数为64时,相对于DPSH(deep supervised Hashing with pairwise labels)方法,在高分二号与谷歌地球遥感影像数据集、CIFAR-10数据集、FLICKR-25K数据集上,mAP(mean average precision)指标分别提高了约2%、6%7%、0.6%。结论本文提出的端对端的深度学习框架,对于带有一个或多个语义标签的遥感影像,能够利用语义特征有效提高对数据集的检索性能。