摘要:目的由于行人图像分辨率差异、光照差异、行人姿态差异以及摄像机视角和成像质量差异等原因,导致同一行人在不同监控视频中的外观区别很大,给行人再识别带来了巨大挑战。为提高行人再识别的准确率,针对以上问题,提出一种基于多特征融合与交替方向乘子法的行人再识别算法。方法首先利用图像增强算法对所有行人图像进行处理,减少因光照变化产生的影响,然后把处理后的图像进行非均匀分割,同时使用特定区域均值法提取行人图像的HSV和LAB颜色特征以及SILTP(scale invariant local ternary pattern)纹理特征和HOG(histogram of oriented gradient)特征,融合多种特征得到行人图像对的整体与局部相似度度量函数并结合产生相似度函数,最后使用交替方向乘子优化算法更新出最优的测度矩阵实现行人再识别。结果在VIPeR、CUHK01、CUHK03和GRID这4个数据集上进行实验,其中VIPeR、CUHK01和GRID 3个数据集Rank1(排名第1的搜索结果即为待查询人的比率)分别达到51.5%、48.7%和21.4%,CUHK03手动裁剪和检测器检测数据集Rank1分别达到62.40%和55.05%,识别率有了显著提高,具有实际应用价值。结论提出的多特征融合与交替方向乘子优化算法,能够很好地描述行人特征,迭代更新出来的测度矩阵能够很好地表达行人之间的距离信息,较大幅度地提高了识别率。该方法适用于大多数应用场景下的行人再识别。尤其是针对复杂场景下静态图像行人再识别问题,在存在局部遮挡、光照差异和姿态差异的情况下也能保持较高的识别正确率。
摘要:目的准确的解缠绕相位是两点或三点Dixon技术等在磁共振临床应用的前提和关键,然而当相位图像中存在严重噪声、快速相位变换或不连通区域时,当前许多已经提出的相位解缠绕算法将会失败。为此本文提出一种基于相位分区和局部多项式曲面拟合的相位解缠绕新方法,该新方法在相位图像存在严重噪声、快速相位变换或不连通区域的情况下仍可以稳定可靠的工作。方法首先将获得的相位图像分成连通块,块内相位都在给定的相位区间内,把像素个数小于给定阈值的块归类为残余像素。然后利用局域增长的局部多项式曲面拟合方法依次进行块与块之间相位解缠绕和残余像素相位解缠绕。最后使用仿真与真实磁共振Dixon数据来评价提出方法,并与PRELUDE(phase region expanding labeler for unwrapping discrete estimates)方法进行了比较。结果在不同信噪比、快速相位变换或存在不连通区域的仿真实验中,即使当数据中存在信噪比为0.5、相邻相位变换大于π弧度或不连通区域时,提出方法的平均错误率不大于0.51%。对于100层真实的磁共振膝关节和踝关节水与脂肪分离图像,提出方法生成结果中发生明显解缠绕错误及水与脂肪互换的比率为6.00%,而PRELUDE却为42.00%。结论本文提出了一种磁共振相位解缠绕算法,利用相位分区方法,可靠的实现相位图像分块;利用局部多项式曲面拟合方法,准确的实现相位解缠绕。提出方法能够更加鲁棒的实现相位解缠绕,这将有益于相位相关的磁共振临床的应用,如两点和三点Dixon水脂分离技术、磁敏感加权成像和人脑相位成像等。
摘要:目的针对用于SAR(synthetic aperture radar)目标识别的深度卷积神经网络模型结构的优化设计难题,在分析卷积核宽度对分类性能影响基础上,设计了一种适用于SAR目标识别的深度卷积神经网络结构。方法首先基于二维随机卷积特征和具有单个隐层的神经网络模型-超限学习机分析了卷积核宽度对SAR图像目标分类性能的影响;然后,基于上述分析结果,在实现空间特征提取的卷积层中采用多个具有不同宽度的卷积核提取目标的多尺度局部特征,设计了一种适用于SAR图像目标识别的深度模型结构;最后,在对MSTAR(moving and stationary target acquisition and recognition)数据集中的训练样本进行样本扩充基础上,设定了深度模型训练的超参数,进行了深度模型参数训练与分类性能验证。结果实验结果表明,对于具有较强相干斑噪声的SAR图像而言,采用宽度更大的卷积核能够提取目标的局部特征,提出的模型因能从输入图像提取目标的多尺度局部特征,对于10类目标的分类结果(包含非变形目标和变形目标两种情况)接近或优于已知文献的最优分类结果,目标总体分类精度分别达到了98.39%和97.69%,验证了提出模型结构的有效性。结论对于SAR图像目标识别,由于与可见光图像具有不同的成像机理,应采用更大的卷积核来提取目标的空间特征用于分类,通过对深度模型进行优化设计能够提高SAR图像目标识别的精度。