最新刊期

    2018 23 2

      图像处理和编码

    • 利用时空相关性的HEVC帧内编码块快速划分

      仲伟波, 陈东, 姚旭洋, 冯友兵
      2018, 23(2): 155-162. DOI: 10.11834/jig.170277
      利用时空相关性的HEVC帧内编码块快速划分
      摘要:目的为了提升高效视频编码(HEVC)的编码效率,使之满足高分辨率、高帧率视频实时编码传输的需求。由分析可知帧内编码单元(CU)的划分对HEVC的编码效率有决定性的影响,通过提高HEVC的CU划分效率,可以大大提升HEVC编码的实时性。方法通过对视频数据分析发现,视频数据具有较强的时间、空间相关性,帧内CU的划分结果也同样具有较强的时间和空间相关性,可以利用前一帧以及当前帧CU的划分结果进行预判以提升帧内CU划分的效率。据此,本文给出一种帧内CU快速划分算法,先根据视频相邻帧数据的时间相关性和帧内数据空间相关性初步确定当前编码块的编码树单元(CTU)形状,再利用前一帧同位CTU平均深度、当前帧已编码CTU深度以及对应的率失真代价值决定当前编码块CTU的最终形状。算法每间隔指定帧数设置一刷新帧,该帧采用HM16.7模型标准CU划分以避免快速CU划分算法带来的误差累积影响。结果利用本文算法对不同分辨率、不同帧率的视频进行测试,与HEVC的参考模型HM16.7相比,本文算法在视频编码质量基本不变,视频码率稍有增加的情况下平均可以节省约40%的编码时间,且高分辨率高帧率的视频码率增加幅度普遍小于低分辨率低帧率的视频码率。结论本文算法在HEVC的框架内,利用视频数据的时间和空间相关性,通过优化帧内CU划分方法,对提升HEVC编码,特别是提高高分辨率高帧率视频HEVC编码的实时性具有重要作用。  
      关键词:帧内编码单元;快速划分;时空相关性;高效视频编码(HEVC)   
      16
      |
      96
      |
      3
      <HTML>
      <网络PDF><Meta-XML>
      <引用本文> <批量引用> 55674593 false
      更新时间:2024-05-07
    • 以运动矢量残差为载体的视频隐写算法

      段然, 陈丹
      2018, 23(2): 163-173. DOI: 10.11834/jig.170278
      以运动矢量残差为载体的视频隐写算法
      摘要:目的以运动矢量(MV)为载体的视频隐写算法会破坏同一帧内相邻宏块或者相邻帧相同位置宏块的运动矢量之间的相关性,从而容易被基于运动矢量时空相关性(temporal-spatial correlation)特征的隐写分析算法检测到。为了解决这个问题,在H.264/AVC的视频编解码标准下构建了一种能抵抗基于运动矢量时空相关性隐写分析的视频隐算法。方法通过分析运动矢量残差(MVD)与运动矢量时空相关性的联系,证明了保持运动矢量残差的统计特征的隐写算法能够很好地保持视频运动矢量的时空相关性;通过分析运动矢量残差的统计特征设置了一种能保持其直方图特征的嵌入规则,使用4个标记符和一个队列来记录修改载体造成的特征改变,并进行相应的补偿操作,将秘密信息嵌入到视频压缩过程中的熵编码之前的运动矢量残差中;结合可变长度的矩阵编码,有效降低了嵌入秘密信息对载体的修改量。结果实验结果表明,该算法能较好地保持运动矢量残差在隐写前后的直方图特征,具有较好的视觉不可见性,对视频峰值信噪比(PSNR)和码率影响都不超过0.5%,满载嵌入的情况下基于运动矢量时空相关性的隐写分析算法对其的检测正确率只有70%左右。结论本文算法以运动矢量残差为隐写嵌入的载体,使用保持其直方图特征的嵌入规则,结合了矩阵编码以减低对载体的修改量,能较好抵抗基于运动矢量时空相关性的隐写分析。  
      关键词:信息隐藏;视频隐写;H.264;运动矢量;运动矢量残差;矩阵编码;时空相关性   
      37
      |
      39
      |
      2
      <HTML>
      <网络PDF><Meta-XML>
      <引用本文> <批量引用> 55674591 false
      更新时间:2024-05-07

      图像分析和识别

    • 水平集中符号距离函数并行降维计算

      江少锋, 杨素华, 陈震, 张聪炫, 周旭欣
      2018, 23(2): 174-181. DOI: 10.11834/jig.170348
      水平集中符号距离函数并行降维计算
      摘要:目的符号距离函数在水平集图像分割,视觉特征提取等图像处理领域有重要应用。随着图像分辨率越来越高,符号距离函数计算效率直接影响图像处理速度,为实现高分辨率图像实时处理,本文在降维法的基础上提出了并行算法,并针对并行计算对降维法进行了改进。方法降维法将2维距离计算转化为两个1维距离计算,并采用抛物线下界法计算1维距离,是当前最快的一种符号距离计算方法。首先利用行和列计算的独立性,提出了降维法的并行算法。然后再对并行降维法进行改进,提出了抛物线下界法的并行算法。该方法采用多线程分段并行计算抛物线下界,即每个像素点与段内相邻像素点并行进行抛物线求交运算,快速搜索抛物线下界,从而实现了抛物线下界法的分段并行距离函数计算。所有并行算法在CUDA平台上采用GPU通用并行计算方法实现。结果对不同分辨率及包含不同曲线的9幅图像进行实验测试,在距离计算误差小于1的条件下,并行降维算法对所有测试图像计算时间均小于0.06 s,计算效率比串行方法有了10倍以上的提升,改进并行降维算法对所有测试图像计算时间均小于0.03 s,计算效率比串行方法有了20倍左右的提升。结论该方法实现了符号距离函数的快速并行计算,其优势在于当图像分辨率较高时仍然能够实现实时处理。  
      关键词:符号距离函数;并行计算;降维法;抛物线下界法;水平集   
      11
      |
      4
      |
      1
      <HTML>
      <网络PDF><Meta-XML>
      <引用本文> <批量引用> 55674595 false
      更新时间:2024-05-07

      图像理解和计算机视觉

    • 引入视通路视觉响应与融合模型的轮廓检测

      郭金朋, 范影乐, 武薇, 朱亚萍
      2018, 23(2): 182-193. DOI: 10.11834/jig.170313
      引入视通路视觉响应与融合模型的轮廓检测
      摘要:目的为了提高轮廓检测的综合性能,特别是增强弱轮廓边缘的提取能力,在结合视觉机制的基础上提出了本文方法。方法模拟视觉信息在视通路中的传递和处理过程,首先根据神经节细胞的中心周边拮抗机制,实现初级轮廓信息的快速提取;接着利用高斯函数与高斯差函数之间的差异性来模拟外膝体非经典感受野的调制作用,实现纹理背景的抑制;然后构建了一种V1区多朝向简单细胞感受野模型,提出了一种基于负值效应的DOG(difference of Gaussians)响应改进评价模式;最后考虑V1区复杂细胞在表征视觉高级特征的能力,给出了一种基于并行处理的视通路视觉响应融合模型,实现目标轮廓的检测与增强。结果为了验证本文方法对自然场景图像的轮廓检测具备有效性,本文选取RuG轮廓检测数据库中的40幅自然场景图进行轮廓检测实验,并与二维高斯导函数模型(DG)、组合感受野模型(CORF)和空间稀疏约束纹理抑制模型(SSC)等3种典型的自然图像轮廓检测方法进行了分析比较。结果表明,本文方法检测提取到的主体轮廓更加完整,具有较高的图像纯净度,整体上反映了本文所提轮廓检测方法所具备的生物智能性。本文方法的平均P指标为0.45,相较于对比方法具有更好的轮廓检测性能。结论本文方法具有较好的自然轮廓检测提取能力,尤其对于图像包含部分弱轮廓边缘的检测。本文构建的新模型将有助于对视通路中各层级功能和内在机制的理解,也将为基于视觉机制的图像分析和理解提供一种新的思路。  
      关键词:轮廓检测;多感受野;DOG负值效应;多视通路;视觉机制   
      11
      |
      4
      |
      1
      <HTML>
      <网络PDF><Meta-XML>
      <引用本文> <批量引用> 55674592 false
      更新时间:2024-05-07

      医学图像处理

    • 深度学习的快速磁共振成像及欠采样轨迹设计

      肖韬辉, 郭建, 赵涛, 王珊珊, 梁栋
      2018, 23(2): 194-208. DOI: 10.11834/jig.170274
      深度学习的快速磁共振成像及欠采样轨迹设计
      摘要:目的快速成像一直是磁共振成像(MRI)技术中的焦点之一,现有多通道并行成像和部分k空间数据重建都是通过减少梯度编码步数来降低数据的获取时间,两者结合起来更能有效地提高扫描速度。然而,在欠采样倍数加高的情况下,依然有很严重的混叠伪影,因此研究一种在保证成像精度的前提下加快成像速度的方法尤为重要。方法基于卷积神经网络的磁共振成像(CNN-MRI)方法利用大量现有的全采样多通道数据的先验信息,设计并线下训练一个深度卷积神经网络,学习待重建图像与全采样图像之间的映射关系,从而在线上成像时,欠采样所丢失数据能被训练好的网络进行预测。本文探讨了对于深度学习磁共振成像的可选择性欠采样方式,提出了一种新的欠采样轨迹方案。为了判断本文方法的性能,用峰值信噪比(PSNR)、结构相似度(SSIM)以及均方根差(RMSE)来作为衡量的指标。结果实验结果表明,所提出欠采样方案的综合性能要优于传统欠采样轨迹,PSNR要高出1~2 dB,SSIM高出近0.1,RMSE要降低0.02~0.04左右。此外重建结果还与经典的并行重建方法GRAPPA(geneRalized autocalibrating partially parallel acquisitions)、SPIRiT(iterative self-consistent parallel imaging reconstruction from arbitrary k-space)以及SAKE(simultaneous autocalibrating and k-space estimation)作比较,从视觉效果以及各项量化指标得出本文方法能重建出更准确的结果,并且重建速度要快5倍以上。结论深度学习方法能很好地在线下训练时从大量数据集中提取并学习到有价值的先验信息,所以在线上测试时能在较短时间内重建出优于经典算法的高质量结果;提出的1维低频汉明滤波欠采样方案则有利于提升该网络的性能。  
      关键词:快速磁共振成像;先验信息;深度学习;卷积神经网络;欠采样轨迹   
      13
      |
      4
      |
      1
      <HTML>
      <网络PDF><Meta-XML>
      <引用本文> <批量引用> 55674594 false
      更新时间:2024-05-07

      遥感图像处理

    • 结合深度学习的单幅遥感图像超分辨率重建

      李欣, 韦宏卫, 张洪群
      2018, 23(2): 209-218. DOI: 10.11834/jig.170194
      结合深度学习的单幅遥感图像超分辨率重建
      摘要:目的克服传统遥感图像超分辨率重建方法依赖同一场景多时相图像序列且需预先配准等缺点,解决学习法中训练效率低和过拟合问题,同时削弱插值操作后的块效应,增强单幅遥感图像超分辨率重建效果。方法首先构造基于四层卷积的深度神经网络结构,并在结构中前三层卷积后添加参数修正线性单元层和局部响应归一化层进行优化,经过训练得到遥感图像超分辨率重建模型,其次,对多波段遥感图像的亮度空间进行双三次插值,然后使用该模型对插值结果进行重建,并在亮度空间重建结果指导下,使用联合双边滤波来提升其色度空间边缘细节。结果应用该方法对实验遥感图像进行2倍、3倍、4倍重建时在无参考指标上均优于对比方法,平均清晰度提升约2.5个单位,同时取得了较好的全参考评价结果,在2倍重建时峰值信噪比较传统插值法提升了约2 dB,且平均训练效率较其他学习法提升3倍以上,所得遥感图像重建结果在目视效果上更加细致、自然。结论实验结果表明,本文设计的网络抗过拟合能力强、训练效率高,重建时针对单幅遥感图像,无需依赖图像序列且不受波段影响,重建结果细节表现较好,具有较强的普适性。  
      关键词:遥感图像;超分辨率;深度学习;卷积神经网络;联合双边滤波   
      41
      |
      45
      |
      13
      <HTML>
      <网络PDF><Meta-XML>
      <引用本文> <批量引用> 55674730 false
      更新时间:2024-05-07
    • 迭代分析相对密度的高光谱异常检测

      李普煌, 李敏, 范新南, 张学武
      2018, 23(2): 219-228. DOI: 10.11834/jig.170243
      迭代分析相对密度的高光谱异常检测
      摘要:目的针对复杂高光谱数据在不同地物规模和光谱特征上的差异,致使背景特征难以准确描述,导致异常检测算法检测效果不理想的问题,提出一种基于相对密度分析建立背景模型的高光谱遥感异常检测算法。方法该算法借助最大相对密度分析的思想,通过统计与待测像元相似像元的数目作为其相对相似性分布密度,在像元光谱特征相似性分布密度的驱动下,自动搜索聚类中心并实现自适应聚类。为了避免不同背景地物受类别规模差异的影响,设计迭代筛选方法不断提取具有相对最大分布密度的类作为背景地物类别。当迭代终止时即可获得关于背景地物的统计模型,最后采用经典的马氏距离实现异常检测。结果仿真实验采用两组常用的数据HyMap和HYDICE,与经典算法如基于聚类分析的异常检测算法(CBAD)、局部RX算法(LRX)和基于空间边缘特征变化的异常检测算法(2DCAD)等进行比较,并采用受试者工作特性曲线(ROC)和ROC曲线下面积(AUC)作为评价标准对实验结果进行分析。从实验数据中可以看到,本文算法在ROC曲线整体上表现优于其他算法,在HyMap下AUC值比同类算法至少高出5.6%,HYDICE下AUC值比同类算法至少高出13.6%。另外,对于不同数据,本文算法最终表现较为稳定,鲁棒性较好。结论实验结果表明该算法无需构建分类面以及设定类别数目,在每次迭代中根据数据本身特征自适应地获取当前规模下背景显著性强的像元。另外,本文建立背景模型的方法适用于不同复杂场景下的高光谱数据,可以获得对背景的准确描述,有助于改善高光谱数据异常检测中对异常目标显著性衡量的准确性。  
      关键词:高光谱数据;异常检测;背景统计模型;迭代筛选;相对最大密度   
      11
      |
      4
      |
      4
      <HTML>
      <网络PDF><Meta-XML>
      <引用本文> <批量引用> 55674734 false
      更新时间:2024-05-07

      2017中国多媒体大会会议专栏

    • 运动显著性概率图提取及目标检测

      王慧斌, 陈哲, 卢苗, 葛晨曦
      2018, 23(2): 229-238. DOI: 10.11834/jig.170388
      运动显著性概率图提取及目标检测
      摘要:目的动态场景图像中所存在的静态目标、背景纹理等静态噪声,以及背景运动、相机抖动等动态噪声,极易导致运动目标检测误检或漏检。针对这一问题,本文提出了一种基于运动显著性概率图的目标检测方法。方法该方法首先在时间尺度上构建包含短期运动信息和长期运动信息的构建时间序列组;然后利用TFT(temporal Fourier transform)方法计算显著性值。基于此,得到条件运动显著性概率图。接着在全概率公式指导下得到运动显著性概率图,确定前景候选像素,突出运动目标的显著性,而对背景的显著性进行抑制;最后以此为基础,对像素的空间信息进行建模,进而检测运动目标。结果对提出的方法在3种典型的动态场景中与9种运动目标检测方法进行了性能评价。3种典型的动态场景包括静态噪声场景、动态噪声场景及动静态噪声场景。实验结果表明,在静态噪声场景中,$ {\mathit{F}_{{\rm{score}}}}$提高到92.91%,准确率提高到96.47%,假正率低至0.02%。在动态噪声场景中,$ {\mathit{F}_{{\rm{score}}}}$提高至95.52%,准确率提高到95.15%,假正率低至0.002%。而在这两种场景中,召回率指标没有取得最好的性能的原因是,本文所提方法在较好的包络目标区域的同时,在部分情况下易将部分目标区域误判为背景区域的,尤其当目标区域较小时,这种误判的比率更为明显。但是,误判的比率一直维持在较低的水平,且召回率的指标也保持在较高的值,完全能够满足于实际应用的需要,不能抵消整体性能的显著提高。另外,在动静态噪声场景中,4种指标均取得了最优的性能。因此,本文方法能有效地消除静态目标干扰,抑制背景运动和相机抖动等动态噪声,准确地检测出视频序列中的运动目标。结论本文方法可以更好地抑制静态背景噪声和由背景变化(水波荡漾、相机抖动等)引起的动态噪声,在复杂的噪声背景下准确地检测出运动目标,提高了运动目标检测的鲁棒性和普适性。  
      关键词:运动目标检测;时间序列组;运动显著性;运动显著性概率图;空间信息建模;噪声抑制   
      11
      |
      4
      |
      0
      <HTML>
      <网络PDF><Meta-XML>
      <引用本文> <批量引用> 55674733 false
      更新时间:2024-05-07
    • 多先验特征与综合对比度的图像显著性检测

      袁巧, 程艳芬, 陈先桥
      2018, 23(2): 239-248. DOI: 10.11834/jig.170381
      多先验特征与综合对比度的图像显著性检测
      摘要:目的图像的显著性检测在计算机视觉中应用非常广泛,现有的方法通常在复杂背景区域下表现不佳,由于显著性检测的低层特征并不可靠,同时单一的特征也很难得到高质量的显著图。提出了一种通过增加特征的多样性来实现显著性检测的方法。方法在高层先验知识的基础上,对背景先验特征和中心先验特征重新进行了定义,并考虑人眼视觉一般会对暖色调更为关注,从而加入颜色先验。另外在图像低层特征上使用目前较为流行的全局对比度和局部对比度特征,在特征融合时针对不同情况分别采取线性和非线性的一种新的融合策略,得到高质量的显著图。结果在MSRA-1000和DUT-OMRON两个公开数据库进行对比验证,实验结果表明,基于多先验特征与综合对比度的图像显著性检测算法具有较高的查准率、召回率和F-measure值,相较于RBD算法均提高了1.5%以上,综合性能均优于目前的10种主流算法。结论相较于基于低层特征和单一先验特征的算法,本文算法充分利用了图像信息,能在突出全局对比度的同时也保留较多的局部信息,达到均匀突出显著性区域的效果,有效地抑制复杂的背景区域,得到更加符合视觉感知的显著图。  
      关键词:复杂背景区域;低层特征;高层先验;背景先验;中心先验;人眼视觉   
      11
      |
      4
      |
      6
      <HTML>
      <网络PDF><Meta-XML>
      <引用本文> <批量引用> 55674736 false
      更新时间:2024-05-07
    • 可学习高阶微分方程的图像盲复原

      程世超, 刘日升, 樊鑫
      2018, 23(2): 249-257. DOI: 10.11834/jig.170391
      可学习高阶微分方程的图像盲复原
      摘要:目的图像盲复原是图像处理中的常见的重要问题之一,具有巨大的研究价值和广泛的应用。通常情况下,相机抖动,聚焦不准,环境噪声等因素都会造成图像模糊。由于图像盲复原需要同时求解模糊核和清晰图像,导致该问题是病态的而难于求解。现有的盲复原方法可以分为两大类,一类是基于最大后验概率来同时估计潜在图像和模糊核的方法,但是这样耦合在一起的方法由于先验条件和初值设置不恰当,常常会导致最终求得的是问题的平凡解,以至于盲复原的效果并不理想。另一类是基于变分贝叶斯来估计模糊核,这种方法通常是采用最大化强边图像的边缘概率,由此估计的模糊核鲁棒性较强,但是对潜在图像的强边条件要求比较高,计算复杂度和实现难度都较大。鉴于以上方法的优缺点,提出基于高阶微分方程学习的方法来实现图像去模糊。方法借鉴传统的迭代演化方法和网络学习方法各自的优势,将网络学习到的特征(引导图像,卷积滤波器,稀疏测度)融入到高阶微分方程的演化过程中区,提出可学习的基于高阶微分方程的演化来模拟图像的演化过程。具体地,先用范数约束得到一个粗略的强边引导图像,然后将学习到的卷积滤波器和稀疏函数一起作用在当前的潜在图像上,得到一个关于图像的更好的梯度下降方向,将此作为微分方程演化的一个步骤,得到一个更为精炼的强边图像。最后用精炼的强边图像来估计模糊核。该方法可以通过先验知识和训练数据来有效地控制模糊核的估计,进而得到较为清晰的盲复原结果。结果在图像建模层面上,用非盲复原的方法验证了本文提出的微分方程演化过程是可行的。通过和其他盲复原方法做对比,在不同的基准图像数据库上的定量的实验中,本文方法在数据库上的峰值信噪比,结构相似度分别达到30.30,0.91,误差率低至1.24;比其他方法的结果都要好,在时间上,虽然我们的算法不是用时最少的,但是和性能相当的本文的方法相比,本文算法时间消耗远比该算法少。在各种不同类型的模糊图像去模糊结果也表明了本文方法是有效的。结论本文可学习的高阶微分方程去模糊的方法,能够有效地估计模糊核,进而更好地恢复出清晰图像。实验结果表明本文方法在各种场景中具有较高的灵活性,都能自适应地对图像去模糊。  
      关键词:图像盲复原;高阶微分方程演化;模糊核;强边图像;可学习   
      11
      |
      5
      |
      0
      <HTML>
      <网络PDF><Meta-XML>
      <引用本文> <批量引用> 55674738 false
      更新时间:2024-05-07
    • 融合凹点检测与仿射变换的活动轮廓模型

      刘国奇, 邓铭, 窦智
      2018, 23(2): 258-268. DOI: 10.11834/jig.170380
      融合凹点检测与仿射变换的活动轮廓模型
      摘要:目的针对基于矢量场的活动轮廓模型,如经典的梯度矢量流(GVF)模型、矢量场卷积(VFC)模型等,在提取凹形物体时矢量场常出现平衡点,不能较好地收敛到凹陷区域、尤其是深而窄的凹形及复杂凹陷区域的问题。提出一种融合凹点检测与仿射变换的活动轮廓模型。方法首先利用活动轮廓模型进行曲线演化,得到演化后轮廓曲线上各点的坐标并求出各点的法线方向;然后基于凹点检测的方法,判断各点的凹凸性,利用梯度判断法,检测出未收敛到目标边界的凹点;其次对各凹点进行法向方向的仿射变换。在接近且不越过目标边界的情况下求出可变换的最大距离,变换后的点穿越了平衡点区域,让变换后的点代替原来的点形成新的轮廓曲线;最后为保证提取边界的精确性,将变换后的轮廓曲线再次演化并最终收敛到目标边界。结果通过对具有凹陷区域的合成图像进行分割,计算提出模型分割结果的平均Jaccard相似系数(JS)值为95.51%,相比目前先进的GVF模型,VFC模型和自适应扩散流(ADF)模型分别提高了15.08%,12.09%和10.70%,整体效果上优于几种先进的模型。然后又对单/多目标真实图像及含噪的图像进行分割,证实提出模型分割性能的鲁棒性。结论提出的模型有效地避免了凹形区域内的平衡点问题,可以对深凹形及复杂凹形图像进行有效分割,并且提高了分割精度。此外,该模型能融合到任何基于矢量场的活动轮廓模型中,具有广泛的普适性。  
      关键词:图像分割;矢量场;活动轮廓模型;凹点检测;仿射变换   
      11
      |
      4
      |
      0
      <HTML>
      <网络PDF><Meta-XML>
      <引用本文> <批量引用> 55674884 false
      更新时间:2024-05-07
    • 多相关滤波自适应融合的鲁棒目标跟踪

      陈倩茹, 刘日升, 樊鑫, 李豪杰
      2018, 23(2): 269-276. DOI: 10.11834/jig.170387
      多相关滤波自适应融合的鲁棒目标跟踪
      摘要:目的由于目标在复杂场景中可能会发生姿态变化、物体遮挡、背景干扰等情况,目标跟踪仍然是一个具有挑战性的课题。目前判别性相关滤波方法在目标跟踪问题上获得了成功而又广泛的应用。标准的相关滤波方法基于循环偏移得到大量训练样本,并利用快速傅里叶变换加速求解滤波器,使其具有很好的实时性和鲁棒性,但边界偏移带来的消极的训练样本降低了跟踪效果。空间正则化的相关滤波跟踪方法引入空间权重函数,增强目标区域的滤波器作用,在增大了目标搜索区域的同时,也增加了计算时间,而且对于目标形变不规则,背景相似的情景也会增强背景滤波器,从而导致跟踪失败。为此,基于以上问题,提出一种自适应融合多种相关滤波器的方法。方法利用交替方向乘子法将无约束的相关滤波问题转化为有约束问题的两个子问题,在子问题中分别采用不同的相关滤波方法进行求解。首先用标准的相关滤波方法进行目标粗定位,进而用空间正则化的相关滤波跟踪方法进行再定位,实现了目标位置和滤波模板的微调,提高了跟踪效果。结果本文算法和目前主流的一些跟踪方法在OTB-2015数据集中100个视频上,以中心坐标误差和目标框的重叠率为评判标准进行了对比实验,本文算法能较好地处理多尺度变化、姿态变化、背景干扰等问题,在CarScale、Freeman4、Girl等视频上都表现出了最好的跟踪结果;本文算法在100个视频上的平均中心坐标误差为28.55像素,平均目标框重叠率为61%,和使用人工特征的方法相比,均高于其他算法,与使用深度特征的相关滤波方法相比,平均中心坐标误差高了6像素,但平均目标框的重叠率高了4%。结论大量的实验结果表明,在目标发生姿态变化、尺度变化等外观变化时,本文算法均具有较好的准确性和鲁棒性。  
      关键词:目标跟踪;空间正则化;相关滤波;自适应;鲁棒性   
      11
      |
      4
      |
      3
      <HTML>
      <网络PDF><Meta-XML>
      <引用本文> <批量引用> 55674885 false
      更新时间:2024-05-07
    • 自然场景图像去雨的可学习混合MAP网络

      马龙, 刘日升, 姜智颖, 王怡洋, 樊鑫, 李豪杰
      2018, 23(2): 277-285. DOI: 10.11834/jig.170390
      自然场景图像去雨的可学习混合MAP网络
      摘要:目的近年来,人工智能成为新兴研究领域,得到越来越多研究机构的关注。图像恢复问题一直是低层次计算机视觉领域的一个研究热点,其中,图像去雨由于其雨线分布的未知性及其求解的病态性,导致难以解决。现有方法存在雨线和背景之间的估计具有依赖性,难以平衡雨线去除效果与估计背景的清晰程度之间的关系;局限性比较大,训练数据很难涵盖各种场景下的雨图,而测试结果受训练数据的影响,导致难于泛化。针对上述不足,借鉴一般图像恢复问题思路,将模型与以数据驱动的网络相结合,凸显网络与模型各自的优势,提出可学习的混合MAP网络有效地解决图像去雨问题。方法首先基于最大后验估计(MAP)建立含有隐式先验的能量模型,然后通过优化算法将模型分解为背景估计模型和雨线估计模型两部分,以减少背景估计和雨线估计之间的依赖性。对于背景估计模型,通过对模型及优化目标分析采用以数据驱动的去噪残差网络进行建模,保证估计出的背景更清晰;对于雨线估计模型,为避免直接对未知的雨线建模失去准确性,利用高斯混合模型实时刻画输入雨图的雨线先验。结果在合成数据集Rain12及真实雨图上进行实验,通过综合考虑定量分析和定性分析,并与3种基于模型的方法及两种基于深度网络的方法相比,本文方法在去除雨线的同时能够损失的背景信息最少,合成数据集上的平均结构相似性(SSIM)值达到0.92。结论本文通过将基于模型的方法与基于深度网络的方法相结合,既去除了雨线又保证了估计背景的清晰程度,同时也验证了将传统模型与深度网络相结合是一种解决图像恢复问题的有效途径。  
      关键词:图像去雨;可学习混合MAP网络;最大后验估计;高斯混合模型;残差网络   
      14
      |
      7
      |
      3
      <HTML>
      <网络PDF><Meta-XML>
      <引用本文> <批量引用> 55674888 false
      更新时间:2024-05-07
    • 运动感知基于缓存的自适应视频流传输

      胡胜红, 胡长坤, 桂超, 肖春霞
      2018, 23(2): 286-292. DOI: 10.11834/jig.170456
      运动感知基于缓存的自适应视频流传输
      摘要:目的基于缓存的自适应视频流传输策略无需估测实时带宽,直接通过缓存变化量与码率的映射函数选取符合当前网络状况的最佳质量码流传输。传统基于缓存的自适应视频传输不考虑内容特征,在码率选择上为不同运动级别视频内容均使用相同的码率映射函数,在不稳定的无线网络环境中高运动强度内容的码率急剧降低会严重伤害用户体验质量(QoE),提出运动感知基于缓存的自适应视频流传输(MA-BBA)算法。方法MA-BBA算法根据片段运动级别确定码率映射函数,对运动强度高的内容快速切换到较高码率,而对于运动强度较低的内容则使用较为保守的码率,从而使得缓存资源能够位于安全边界之上且较多分配给高级别运动内容,提高不同运动强度内容的平均质量,使整体QoE得到优化。结果在公开的无线网络带宽数据集上实现本文MA-BBA算法,基于吞吐量的自适应传输算法(TBA)和基于缓存的自适应传输算法(BBA)。MA-BBA在高运动强度内容的平均质量上比TBA和BBA分别提高1.7%和1.2%,且质量波动区间更小。MA-BBA在平均缓存利用率上达到72%,大大高于TBA的45.9%和BBA的45.4%。结论MA-BBA算法与现有的码率自适应算法TBA和BBA相比,大大提高了缓存资源利用率,提高了对资源要求最苛刻的高级别运动内容的传输质量,减小码率切换幅度频率,优化了视频服务的整体QoE。  
      关键词:自适应视频流;缓存管理;语义感知;体验质量   
      11
      |
      4
      |
      0
      <HTML>
      <网络PDF><Meta-XML>
      <引用本文> <批量引用> 55674889 false
      更新时间:2024-05-07
    • 即时全变差优化的低延时视频稳像方法

      刘天, 张磊, 黄华
      2018, 23(2): 293-302. DOI: 10.11834/jig.170377
      即时全变差优化的低延时视频稳像方法
      摘要:目的传统的视频稳像方法为了获得理想的稳像效果,一般耗费较多的计算时间,且存在较长的延时。针对此问题,提出一种即时全变差优化的低延时视频稳像方法。方法首先利用特征点检测和匹配计算帧间单应变换,得到抖动视频的运动路径;然后通过即时全变差优化方法对抖动路径进行平滑优化,获得稳定的运动路径;最后通过运动补偿,生成稳定的视频。结果对公共视频数据集中的抖动视频进行稳像效果测试,并与当前稳像效果较好的几种稳像算法和商业软件进行效果和时间对比。在时间方面,统计了不同方法的每帧平均消耗时间和处理延迟帧数,不同于后期处理方法需要得到大部分视频帧才能够进行计算,本文算法能够在只有一帧延时的情况下获得最终的稳像结果,相比于MeshFlow方法有15%左右的速度提升;在稳像效果方面,计算了不同方法稳像后的视频扭曲率和裁剪率,并邀请非专业用户进行了稳定程度的主观判断,本文算法的实验结果并不输于目前被公认较好的3种后期稳像方法,优于Kalman滤波方法。结论本文所提稳像方法能够兼顾速度和有效性,相对于传统方法,更适合低延时要求的应用场景。  
      关键词:视频稳像;低延时;即时;全变差优化;运动路径   
      14
      |
      5
      |
      0
      <HTML>
      <网络PDF><Meta-XML>
      <引用本文> <批量引用> 55674914 false
      更新时间:2024-05-07
    0