儿童青少年大脑发育及脑图谱研究综述
Review of brain development and brain atlases in children and adolescents
- 2024年29卷第6期 页码:1555-1574
纸质出版日期: 2024-06-16
DOI: 10.11834/jig.240021
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2024-06-16 ,
移动端阅览
李雯, 樊令仲, 宋明, 张瑜, 罗娜, 程禄祺, 蒋田仔. 2024. 儿童青少年大脑发育及脑图谱研究综述. 中国图象图形学报, 29(06):1555-1574
Li Wen, Fan Lingzhong, Song Ming, Zhang Yu, Luo Na, Cheng Luqi, Jiang Tianzi. 2024. Review of brain development and brain atlases in children and adolescents. Journal of Image and Graphics, 29(06):1555-1574
大脑发育是神经系统结构和功能分化及成熟的一系列动态过程。大脑结构的发育包括部分脑区白质体积和完整性的增加,以及灰质体积的下降等;而这些结构的改变往往伴随着认知功能的变化,如智商、工作记忆和问题解决能力的提高以及社会认知的改善等。越来越多的发育研究为儿童青少年的教育干预提供了参考信息,帮助学校和家庭引导其从拥有冲动冒险心理状态的少年儿童阶段平稳过渡到心智更为成熟的成人阶段。脑图谱作为研究脑结构、脑功能及脑疾病的重要手段,是研究者对大脑进行解析的有力工具,在大脑发育研究中发挥着不可缺少的作用。本文立足于发育脑图谱,从3方面对儿童青少年大脑发育及脑图谱研究进展进行综述。首先,介绍儿童青少年发育阶段大脑特征的转变,以此来强调关注儿童青少年阶段大脑健康发育的重要性;其次,介绍现有的包括数据预处理步骤在内的发育图谱绘制的方法和手段;最后,对儿童和青少年图谱的研究进展进行描述,并分析当前研究对理解儿童青少年发育所做出的贡献以及它们的不足之处。对发育中的大脑进行研究,有利于增强对正常发育过程的了解,以针对性地对失衡的发育过程进行早期干预;通过对现有技术手段优缺点的总结,促进相关领域研究者开发更多以研究儿童青少年为导向的数据处理工具;综述具有精细划分的基于特定年龄儿童的大脑发育图谱,为未来的发育研究提供了强有力的研究工具的参考。这一综述有助于促进跨学科研究,推动儿童和青少年大脑发育领域的进展,从而为青少年的教育、健康和神经疾病研究提供更好的指导。
The process of brain development in children and adolescents involves various complex, dynamic, and adaptive processes that drive the differentiation and maturation of neural system structures and functions. Changes in brain structures include an increase in white matter volume and integrity in various brain regions, which are accompanied by a decrease in gray matter volume. These structural changes often coincide with alterations in cognitive functions, such as improved intelligence, working memory, problem-solving abilities, and enhanced social cognition. However, the high plasticity of brain structure and function during childhood and adolescence not only facilitates the refinement of brain function but also introduces vulnerabilities to developmental disruptions. Investigating the developing brain is crucial to enhance our understanding of normal developmental processes and allow for targeted early interventions in cases of developmental imbalances. Brain atlas, as an important tool for studying brain structure, function, and diseases, is a powerful tool for researchers to analyze the brain and plays an indispensable role in brain development research. Brain atlases consist of one or multiple brain images with different types of delineated boundaries. In general, these boundaries are partitioned based on existing knowledge of brain anatomy, pathology, or functional characteristics. Their fundamental value lies in providing a priori knowledge about brain anatomy and function. The continuous maturation of brain structure and various cognitive functions during the development stages of children and adolescents leads to differences in the regionalization patterns between children and adults. During early life, some subregions that are clearly delineated in the adult brain remain undifferentiated in the brains of children. These areas await developmental cues from external stimuli to gradually form more distinct boundaries. Clearly, using atlases derived from adults is inappropriate in studies involving children. Inappropriate brain atlases may introduce certain errors in research involving children and adolescents, especially in regions of the brain, such as the frontal lobes, where significant differences exist between children and adults. Building developmental brain atlases for children and adolescents is potentially more challenging than adult brain atlases. Advanced techniques may be required for constructing images of the developing brain, which addresses issues such as higher susceptibility to motion artifacts and lower contrast in scan images. Furthermore, obtaining data from children typically involves additional ethical considerations and requires consent from parents or guardians. These factors collectively pose challenges to the construction of developmental children brain atlases. Notably, the continuous improvement in magnetic resonance imaging (MRI) technology and the growing global attention to the physical and mental health development of children and adolescents in recent years have increased the number of developmental studies. Among these studies, some attempts have made to build developmental atlases for children and adolescents. These studies provide valuable information for educational interventions in children and adolescents, which guides their transition from impulsive and risk-taking psychological states to more mature adulthood. This review focuses on developmental brain atlases and offers an overview of research progress related to brain development and brain atlases of children and adolescents from three key perspectives. First, it introduces the transitions in brain characteristics during childhood and adolescence, which emphasizes the importance of promoting brain-healthy development during these crucial developmental stages. Second, unlike in adults, pediatric brain scan images typically exhibit lower contrast and increased head motion, which necessitates additional technical measures to address the additional noise generated during scans. Summarizing the advantages and disadvantages of current developmental atlas methods, including specialized data preprocessing steps, will promote the development of more data processing tools tailored for research on children and adolescents. Finally, researchers can identify and monitor variations in brain development, which are in typical and atypical cases, by segmenting the brain into regions and creating atlases that represent these divisions. This approach not only aids in understanding the natural course of brain development but also helps in identifying and addressing potential developmental issues. Meanwhile, the structural and functional modules of the brain undergo processes of integration or differentiation during the developmental process. If the same regional divisions are applied to statistically analyze various feature indices, then inaccuracies in localization may lead to deviations between statistical results and actual results. This review describes the progress in research on pediatric and adolescent templates and brain atlases, which helps analyze the contributions and limitations of these studies in understanding pediatric and adolescent development. The segmentation of different regions within the spatial landscape of the brain forms the foundation for decoding the human brain, and the brain atlases derived from these region divisions serve as powerful tools for researchers to analyze the brain. In recent years, the advancement in MRI technology has enabled researchers to observe and explore characteristics of the human brain, such as sulci and gyri, and networks at different developmental stages more effectively. Focusing on developmental brain atlases, conducting research on the developing brain is crucial for enhancing our understanding of normal developmental processes and facilitating targeted early interventions for developmental imbalances. Brain atlases provide researchers with the ability to investigate the significant structural and functional changes in the brain during different stages of life. Research on developing brains contributes to a better understanding of the normal developmental process, which enables targeted early interventions for imbalances in development. Summarizing the advantages and disadvantages of existing technological methods encourages researchers in related fields to develop more data processing tools tailored to the study of children and adolescents. This review of finely segmented brain development atlases based on specific age groups provides a powerful reference for future developmental research. This review, which is grounded in developmental brain atlases, deepens the understanding of brain development and promotes interdisciplinary research by reviewing the general features of development at the child and adolescent stages, the main ways to explore the features, and the developmental mapping as an essential tool for brain developmental research. Thus, it informs the advancement of the field of brain development in children and adolescents and provides a better guide to the study of the education, health, and neurological disorders of adolescents.
儿童青少年发育大脑图谱大脑模板磁共振成像(MRI)发育数据集预处理
child and adolescencedevelopmentbrain atlasbrain templatesmagnetic resonance imaging(MRI)developmental datasetspreprocessing
Alexander L M, Escalera J, Ai L, Andreotti C, Febre K, Mangone A, Vega-Potler N, Langer N, Alexander A, Kovacs M, Litke S, O’Hagan B, Andersen J, Bronstein B, Bui A, Bushey M, Butler H, Castagna V, Camacho N, Chan E, Citera D, Clucas J, Cohen S, Dufek S, Eaves M, Fradera B, Gardner J, Grant-Villegas N, Green G, Gregory C, Hart E, Harris S, Horton M, Kahn D, Kabotyanski K, Karmel B, Kelly S P, Kleinman K, Koo B, Kramer E, Lennon E, Lord C, Mantello G, Margolis A, Merikangas K R, Milham J, Minniti G, Neuhaus R, Levine A, Osman Y, Parra L C, Pugh K R, Racanello A, Restrepo A, Saltzman T, Septimus B, Tobe R, Waltz R, Williams A, Yeo A, Castellanos F X, Klein A, Paus T, Leventhal B L, Craddock R C, Koplewicz H S and Milham M P. 2017. An open resource for transdiagnostic research in pediatric mental health and learning disorders. Scientific Data, 4(1): #170181 [DOI: 10.1038/sdata.2017.181http://dx.doi.org/10.1038/sdata.2017.181]
Andersson J L R, Graham M S, Drobnjak I, Zhang H, Filippini N and Bastiani M. 2017. Towards a comprehensive framework for movement and distortion correction of diffusion MR images: within volume movement. NeuroImage, 152: 450-466 [DOI: 10.1016/j.neuroimage.2017.02.085http://dx.doi.org/10.1016/j.neuroimage.2017.02.085]
Asato M R, Terwilliger R, Woo J and Luna B. 2010. White matter development in adolescence: a DTI study. Cerebral Cortex, 20(9): 2122-2131 [DOI: 10.1093/cercor/bhp282http://dx.doi.org/10.1093/cercor/bhp282]
Banich M T, De La Vega A, Andrews-Hanna J R, Mackiewicz Seghete K, Du Y P and Claus E D. 2013. Developmental trends and individual differences in brain systems involved in intertemporal choice during adolescence. Psychology of Addictive Behaviors, 27(2): 416-430 [DOI: 10.1037/a0031991http://dx.doi.org/10.1037/a0031991]
Barnea-Goraly N, Menon V, Eckert M, Tamm L, Bammer R, Karchemskiy A, Dant C C and Reiss A L. 2005. White matter development during childhood and adolescence: a cross-sectional diffusion tensor imaging study. Cerebral Cortex, 15(12): 1848-1854 [DOI: 10.1093/cercor/bhi062http://dx.doi.org/10.1093/cercor/bhi062]
Bashat D B, Sira L B, Graif M, Pianka P, Hendler T, Cohen Y and Assaf Y. 2005. Normal white matter development from infancy to adulthood: comparing diffusion tensor and high b value diffusion weighted MR images. Journal of Magnetic Resonance Imaging, 21(5): 503-511 [DOI: 10.1002/jmri.20281http://dx.doi.org/10.1002/jmri.20281]
Bethlehem R A I, Seidlitz J, White S R, Vogel J W, Anderson K M, Adamson C, Adler S, Alexopoulos G S, Anagnostou E, Areces-Gonzalez A, Astle D E, Auyeung B, Ayub M, Bae J, Ball G, Baron-Cohen S, Beare R, Bedford S A, Benegal V, Beyer F, Blangero J, Blesa Cábez M, Boardman J P, Borzage M, Bosch-Bayard J F, Bourke N, Calhoun V D, Chakravarty M M, Chen C, Chertavian C, Chetelat G, Chong Y S, Cole J H, Corvin A, Costantino M, Courchesne E, Crivello F, Cropley V L, Crosbie J, Crossley N, Delarue M, Delorme R, Desrivieres S, Devenyi G A, Di Biase M A, Dolan R, Donald K A, Donohoe G, Dunlop K, Edwards A D, Elison J T, Ellis C T, Elman J A, Eyler L, Fair D A, Feczko E, Fletcher P C, Fonagy P, Franz C E, Galan-Garcia L, Gholipour A, Giedd J, Gilmore J H, Glahn D C, Goodyer I M, Grant P E, Groenewold N A, Gunning F M, Gur R E, Gur R C, Hammill C F, Hansson O, Hedden T, Heinz A, Henson R N, Heuer K, Hoare J, Holla B, Holmes A J, Holt R, Huang H, Im K, Ipser J, Jack C R, Jackowski A P, Jia T, Johnson K A, Jones P B, Jones D T, Kahn R S, Karlsson H, Karlsson L, Kawashima R, Kelley E A, Kern S, Kim K W, Kitzbichler M G, Kremen W S, Lalonde F, Landeau B, Lee S, Lerch J, Lewis J D, Li J, Liao W, Liston C, Lombardo M V, Lv J, Lynch C, Mallard T T, Marcelis M, Markello R D, Mathias S R, Mazoyer B, McGuire P, Meaney M J, Mechelli A, Medic N, Misic B, Morgan S E, Mothersill D, Nigg J, Ong M Q W, Ortinau C, Ossenkoppele R, Ouyang M, Palaniyappan L, Paly L, Pan P M, Pantelis C, Park M M, Paus T, Pausova Z, Paz-Linares D, Pichet Binette A, Pierce K, Qian X, Qiu J, Qiu A, Raznahan A, Rittman T, Rodrigue A, Rollins C K, Romero-Garcia R, Ronan L, Rosenberg M D, Rowitch D H, Salum G A, Satterthwaite T D, Schaare H L, Schachar R J, Schultz A P, Schumann G, Schöll M, Sharp D, Shinohara R T, Skoog I, Smyser C D, Sperling R A, Stein D J, Stolicyn A, Suckling J, Sullivan G, Taki Y, Thyreau B, Toro R, Traut N, Tsvetanov K A, Turk-Browne N B, Tuulari J J, Tzourio C, Vachon-Presseau É, Valdes-Sosa M J, Valdes-Sosa P A, Valk S L, Van Amelsvoort T, Vandekar S N, Vasung L, Victoria L W, Villeneuve S, Villringer A, Vértes P E, Wagstyl K, Wang Y S, Warfield S K, Warrier V, Westman E, Westwater M L, Whalley H C, Witte A V, Yang N, Yeo B, Yun H, Zalesky A, Zar H J, Zettergren A, Zhou J H, Ziauddeen H, Zugman A, Zuo X N, 3R-BRAIN, AIBL, Alzheimer’s Disease Neuroimaging Initiative, Alzheimer’s Disease Repository Without Borders Investigators, CALM Team, Cam-CAN, CCNP, COBRE, cVEDA, ENIGMA Developmental Brain Age Working Group, Developing Human Connectome Project, FinnBrain, Harvard Aging Brain Study, IMAGEN, KNE96, The Mayo Clinic Study of Aging, NSPN, POND, The PREVENT-AD Research Group, VETSA, Bullmore E T and Alexander-Bloch A F. 2022. Brain charts for the human lifespan. Nature, 604(7906): 525-533 [DOI: 10.1038/s41586-022-04554-yhttp://dx.doi.org/10.1038/s41586-022-04554-y]
Black M M, Walker S P, Fernald L C H, Andersen C T, DiGirolamo A M, Lu C L, McCoy D C, Fink G, Shawar Y R, Shiffman J, Devercelli A E, Wodon Q T, Vargas-Barón E and Grantham-McGregor S. 2017. Early childhood development coming of age: science through the life course. The Lancet, 389(10064): 77-90 [DOI: 10.1016/S0140-6736(16)31389-7http://dx.doi.org/10.1016/S0140-6736(16)31389-7]
Black R E, Victora C G, Walker S P, Bhutta Z A, Christian P, De Onis M, Ezzati M, Grantham-McGregor S, Katz J, Martorell R, Uauy R and the Maternal and Child Nutrition Study Group. 2013. Maternal and child undernutrition and overweight in low-income and middle-income countries. The Lancet, 382(9890): 427-451 [DOI: 10.1016/S0140-6736(13)60937-Xhttp://dx.doi.org/10.1016/S0140-6736(13)60937-X]
Buckner R L and Krienen F M. 2013. The evolution of distributed association networks in the human brain. Trends in Cognitive Sciences, 17(12): 648-665 [DOI: 10.1016/j.tics.2013.09.017http://dx.doi.org/10.1016/j.tics.2013.09.017]
Casey B J, Cannonier T, Conley M I, Cohen A O, Barch D M, Heitzeg M M, Soules M E, Teslovich T, Dellarco D V, Garavan H, Orr C A, Wager T D, Banich M T, Speer N K, Sutherland M T, Riedel M C, Dick A S, Bjork J M, Thomas K M, Chaarani B, Mejia M H, Hagler D J, Daniela Cornejo M, Sicat C S, Harms M P, Dosenbach N U F, Rosenberg M, Earl E, Bartsch H, Watts R, Polimeni J R, Kuperman J M, Fair D A, Dale A M and ABCD Imaging Acquisition Workgroup. 2018. The adolescent brain cognitive development (ABCD) study: imaging acquisition across 21 sites. Developmental Cognitive Neuroscience, 32: 43-54 [DOI: 10.1016/j.dcn.2018.03.001http://dx.doi.org/10.1016/j.dcn.2018.03.001]
Christian P, Murray-Kolb L E, Tielsch J M, Katz J, LeClerq S C and Khatry S K. 2014. Associations between preterm birth, small-for-gestational age, and neonatal morbidity and cognitive function among school-age children in Nepal. BMC Pediatrics, 14(1): #58 [DOI: 10.1186/1471-2431-14-58http://dx.doi.org/10.1186/1471-2431-14-58]
Chugani H T. 1998. A critical period of brain development: studies of cerebral glucose utilization with PET. Preventive Medicine, 27(2): 184-188 [DOI: 10.1006/pmed.1998.0274http://dx.doi.org/10.1006/pmed.1998.0274]
Di Martino A, Yan C G, Li Q, Denio E, Castellanos F X, Alaerts K, Anderson J S, Assaf M, Bookheimer S Y, Dapretto M, Deen B, Delmonte S, Dinstein I, Ertl-Wagner B, Fair D A, Gallagher L, Kennedy D P, Keown C L, Keysers C, Lainhart J E, Lord C, Luna B, Menon V, Minshew N J, Monk C S, Mueller S, Müller R A, Nebel M B, Nigg J T, O’Hearn K, Pelphrey K A, Peltier S J, Rudie J D, Sunaert S, Thioux M, Tyszka J M, Uddin L Q, Verhoeven J S, Wenderoth N, Wiggins J L, Mostofsky S H and Milham M P. 2014. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19(6): 659-667 [DOI: 10.1038/mp.2013.78http://dx.doi.org/10.1038/mp.2013.78]
DiPietro J A. 2000. Baby and the brain: advances in child development. Annual Review of Public Health, 21(1): 455-471 [DOI: 10.1146/annurev.publhealth.21.1.455http://dx.doi.org/10.1146/annurev.publhealth.21.1.455]
Eickhoff S B, Yeo B T T and Genon S. 2018. Imaging-based parcellations of the human brain. Nature Reviews Neuroscience, 19(11): 672-686 [DOI: 10.1038/s41583-018-0071-7http://dx.doi.org/10.1038/s41583-018-0071-7]
Elston G N, Oga T and Fujita I. 2009. Spinogenesis and pruning scales across functional hierarchies. The Journal of Neuroscience, 29(10): 3271-3275 [DOI: 10.1523/JNEUROSCI.5216-08.2009http://dx.doi.org/10.1523/JNEUROSCI.5216-08.2009]
Ernst M, Torrisi S, Balderston N, Grillon C and Hale E A. 2015. fMRI functional connectivity applied to adolescent neurodevelopment. Annual Review of Clinical Psychology, 11: 361-377 [DOI: 10.1146/annurev-clinpsy-032814-112753http://dx.doi.org/10.1146/annurev-clinpsy-032814-112753]
Fleming S, Thompson M, Stevens R, Heneghan C, Plüddemann A, Maconochie I, Tarassenko L and Mant D. 2011. Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: a systematic review of observational studies. The Lancet. 377(9770):1011-1018 [10.1016/S0140-6736(10)62226-X]
Fonov V, Evans A C, Botteron K, Almli C R, McKinstry R C, Collins D L and the Brain Development Cooperative Group. 2011. Unbiased average age-appropriate atlases for pediatric studies. NeuroImage, 54(1): 313-327 [DOI: 10.1016/j.neuroimage.2010.07.033http://dx.doi.org/10.1016/j.neuroimage.2010.07.033]
Fonov V S, Evans A C, McKinstry R C, Almli C R and Collins D L. 2009. Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage, 47(S1): #S102 [DOI: 10.1016/S1053-8119(09)70884-5http://dx.doi.org/10.1016/S1053-8119(09)70884-5]
Fuhrmann D, Knoll L J and Blakemore S J. 2015. Adolescence as a sensitive period of brain development. Trends in Cognitive Sciences, 19(10): 558-566 [DOI: 10.1016/j.tics.2015.07.008http://dx.doi.org/10.1016/j.tics.2015.07.008]
Fuhrmann D, Madsen K S, Johansen L B, Baaré W F C and Kievit R A. 2022. The midpoint of cortical thinning between late childhood and early adulthood differs between individuals and brain regions: evidence from longitudinal modelling in a 12-wave neuroimaging sample. NeuroImage, 261: #119507 [DOI: 10.1016/j.neuroimage.2022.119507http://dx.doi.org/10.1016/j.neuroimage.2022.119507]
Ghosh S S, Kakunoori S, Augustinack J, Nieto-Castanon A, Kovelman I, Gaab N, Christodoulou J A, Triantafyllou C, Gabrieli J D E and Fischl B. 2010. Evaluating the validity of volume-based and surface-based brain image registration for developmental cognitive neuroscience studies in children 4 to 11years of age. NeuroImage, 53(1): 85-93 [DOI: 10.1016/j.neuroimage.2010.05.075http://dx.doi.org/10.1016/j.neuroimage.2010.05.075]
Glasser M F, Sotiropoulos S N, Wilson J A, Coalson T S, Fischl B, Andersson J L, Xu J Q, Jbabdi S, Webster M, Polimeni J R, Van Essen D C, Jenkinson M and for the WU-Minn HCP Consortium. 2013. The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage, 80: 105-124 [DOI: 10.1016/j.neuroimage.2013.04.127http://dx.doi.org/10.1016/j.neuroimage.2013.04.127]
Graff K, Tansey R, Ip A, Rohr C, Dimond D, Dewey D and Bray S. 2022. Benchmarking common preprocessing strategies in early childhood functional connectivity and intersubject correlation fMRI. Developmental Cognitive Neuroscience, 54: #101087 [DOI: 10.1016/j.dcn.2022.101087http://dx.doi.org/10.1016/j.dcn.2022.101087]
Hair N L, Hanson J L, Wolfe B L and Pollak S D. 2015. Association of child poverty, brain development, and academic achievement. JAMA Pediatrics, 169(9): 822-829 [DOI: 10.1001/jamapediatrics.2015.1475http://dx.doi.org/10.1001/jamapediatrics.2015.1475]
Hanson J L, Nacewicz B M, Sutterer M J, Cayo A A, Schaefer S M, Rudolph K D, Shirtcliff E A, Pollak S D and Davidson R J. 2015. Behavioral problems after early life stress: contributions of the hippocampus and amygdala. Biological Psychiatry, 77(4): 314-323 [DOI: 10.1016/j.biopsych.2014.04.020http://dx.doi.org/10.1016/j.biopsych.2014.04.020]
Hermoye L, Saint-Martin C, Cosnard G, Lee S K, Kim J, Nassogne M C, Menten R, Clapuyt P, Donohue P K, Hua K G, Wakana S, Jiang H Y, van Zijl P C M and Mori S. 2006. Pediatric diffusion tensor imaging: normal database and observation of the white matter maturation in early childhood. NeuroImage, 29(2): 493-504 [DOI: 10.1016/j.neuroimage.2005.08.017http://dx.doi.org/10.1016/j.neuroimage.2005.08.017]
Hernandez L M, Rudie J D, Green S A, Bookheimer S and Dapretto M. 2015. Neural signatures of autism spectrum disorders: insights into brain network dynamics. Neuropsychopharmacology, 40(1): 171-189 [DOI: 10.1038/npp.2014.172http://dx.doi.org/10.1038/npp.2014.172]
Hoogman M, Muetzel R, Guimaraes J P, Shumskaya E, Mennes M, Zwiers M P, Jahanshad N, Sudre G, Wolfers T, Earl E A, Soliva Vila J C, Vives-Gilabert Y, Khadka S, Novotny S E, Hartman C A, Heslenfeld D J, Schweren L J S, Ambrosino S, Oranje B, de Zeeuw P, Chaim-Avancini T M, Rosa P G P, Zanetti M V, Malpas C B, Kohls G, von Polier G G, Seitz J, Biederman J, Doyle A E, Dale A M, van Erp T G M, Epstein J N, Jernigan T L, Baur-Streubel R, Ziegler G C, Zierhut K C, Schrantee A, Høvik M F, Lundervold A J, Kelly C, McCarthy H, Skokauskas N, O’Gorman Tuura R L, Calvo A, Lera-Miguel S, Nicolau R, Chantiluke K C, Christakou A, Vance A, Cercignani M, Gabel M C, Asherson P, Baumeister S, Brandeis D, Hohmann S, Bramati I E, Tovar-Moll F, Fallgatter A J, Kardatzki B, Schwarz L, Anikin A, Baranov A, Gogberashvili T, Kapilushniy D, Solovieva A, El Marroun H, White T, Karkashadze G, Namazova-Baranova L, Ethofer T, Mattos P, Banaschewski T, Coghill D, Plessen K J, Kuntsi J, Mehta M A, Paloyelis Y, Harrison N A, Bellgrove M A, Silk T J, Cubillo A I, Rubia K, Lazaro L, Brem S, Walitza S, Frodl T, Zentis M, Castellanos F X, Yoncheva Y N, Haavik J, Reneman L, Conzelmann A, Lesch K P, Pauli P, Reif A, Tamm L, Konrad K, Oberwelland Weiss E, Busatto G F, Louza M R, Durston S, Hoekstra P J, Oosterlaan J, Stevens M C, Ramos-Quiroga J A, Vilarroya O, Fair D A, Nigg J T, Thompson P M, Buitelaar J K, Faraone S V, Shaw P, Tiemeier H, Bralten J and Franke B. 2019. Brain imaging of the cortex in ADHD: a coordinated analysis of large-scale clinical and population-based samples. American Journal of Psychiatry, 176(7): 531-542 [DOI: 10.1176/appi.ajp.2019.18091033http://dx.doi.org/10.1176/appi.ajp.2019.18091033]
Huttenlocher P R. 1984. Synapse elimination and plasticity in developing human cerebral cortex. American Journal of Mental Deficiency, 88(5): 488-496
Innocenti G M and Price D J. 2005. Exuberance in the development of cortical networks. Nature Reviews Neuroscience, 6(12): 955-965 [DOI: 10.1038/nrn1790http://dx.doi.org/10.1038/nrn1790]
Jernigan T L, Brown T T, Hagler D J, Akshoomoff N, Bartsch H, Newman E, Thompson W K, Bloss C S, Murray S S, Schork N, Kennedy D N, Kuperman J M, McCabe C, Chung Y, Libiger O, Maddox M, Casey B J, Chang L D, Ernst T M, Frazier J A, Gruen J R, Sowell E R, Kenet T, Kaufmann W E, Mostofsky S, Amaral D G, and Dale A M. 2016. The pediatric imaging, neurocognition, and genetics (PING) data repository. NeuroImage, 124: 1149-1154 [DOI: 10.1016/j.neuroimage.2015.04.057http://dx.doi.org/10.1016/j.neuroimage.2015.04.057]
Jiang X, Yuan Y X, Wang Y P, Xiao Z X, Zhu M L, Chen Z H, Liu T M and Shen D G. 2022. A 20-year retrospect and prospect of medical imaging artificial intelligence in China. Journal of Image and Graphics, 27(3): 655-671
蒋希, 袁奕萱, 王雅萍, 肖振祥, 朱美芦, 陈泽华, 刘天明, 沈定刚. 2022. 中国医学影像人工智能20年回顾和展望. 中国图象图形学报, 27(3): 655-671 [DOI: 10.11834/jig.211162http://dx.doi.org/10.11834/jig.211162]
Kann L, McManus T, Harris W A, Shanklin S L, Flint K H, Queen B, Lowry R, Chyen D, Whittle L, Thornton J, Lim C, Bradford D, Yamakawa Y, Leon M, Brener N and Ethier K A. 2018. Youth risk behavior surveillance—United States, 2017. MMWR, Surveillance Summaries, 67(8): 1-114 [DOI: 10.15585/mmwr.ss6708a1http://dx.doi.org/10.15585/mmwr.ss6708a1]
Kessler R C, Amminger G P, Aguilar-Gaxiola S, Alonso J, Lee S and Üstün T B. 2007. Age of onset of mental disorders: a review of recent literature. Current Opinion in Psychiatry, 20(4): 359-364 [DOI: 10.1097/YCO.0b013e32816ebc8chttp://dx.doi.org/10.1097/YCO.0b013e32816ebc8c]
Lebel C and Beaulieu C. 2011. Longitudinal development of human brain wiring continues from childhood into adulthood. Journal of Neuroscience, 31(30): 10937-10947 [DOI: 10.1523/JNEUROSCI.5302-10.2011http://dx.doi.org/10.1523/JNEUROSCI.5302-10.2011]
Lebel C, Gee M, Camicioli R, Wieler M, Martin W and Beaulieu C. 2012. Diffusion tensor imaging of white matter tract evolution over the lifespan. NeuroImage, 60(1): 340-352 [DOI: 10.1016/j.neuroimage.2011.11.094http://dx.doi.org/10.1016/j.neuroimage.2011.11.094]
Lebel C, Walker L, Leemans A, Phillips L and Beaulieu C. 2008. Microstructural maturation of the human brain from childhood to adulthood. NeuroImage, 40(3): 1044-1055 [DOI: 10.1016/j.neuroimage.2007.12.053http://dx.doi.org/10.1016/j.neuroimage.2007.12.053]
Li W, Fan L Z, Shi W Y, Lu Y H, Li J, Luo N, Wang H Y, Chu C Y, Ma L, Song M, Li K X, Cheng L Q, Cao L and Jiang T Z. 2023. Brainnetome atlas of preadolescent children based on anatomical connectivity profiles. Cerebral Cortex, 33(9): 5264-5275 [DOI: 10.1093/cercor/bhac415http://dx.doi.org/10.1093/cercor/bhac415]
Liu S M, Wang Y S, Zhang Q, Zhou Q, Cao L Z, Jiang C, Zhang Z, Yang N, Dong Q, Zuo X N and the Chinese Color Nest Consortium. 2021. Chinese Color Nest Project: an accelerated longitudinal brain-mind cohort. Developmental Cognitive Neuroscience, 52: #101020 [DOI: 10.1016/j.dcn.2021.101020http://dx.doi.org/10.1016/j.dcn.2021.101020]
Luo L Q and O’Leary D D M. 2005. Axon retraction and degeneration in development and disease. Annual Review of Neuroscience, 28: 127-156 [DOI: 10.1146/annurev.neuro.28.061604.135632http://dx.doi.org/10.1146/annurev.neuro.28.061604.135632]
Luo N, Song M, Yang Z Y and Jiang T Z. 2022. Survey on cross-modal fusion based on brain atlas data. Journal of Image and Graphics, 27(6): 2036-2056
罗娜, 宋明, 杨正宜, 蒋田仔. 2022. 跨模态脑图谱数据融合研究进展. 中国图象图形学报, 27(6): 2036-2056 [DOI: 10.11834/jig.220036http://dx.doi.org/10.11834/jig.220036]
Mechelli A, Price C J, Friston K J and Ashburner J. 2005. Voxel-based morphometry of the human brain: methods and applications. Current Medical Imaging, 1(2): 105-113 [DOI: 10.2174/1573405054038726http://dx.doi.org/10.2174/1573405054038726]
Menon V. 2013. Developmental pathways to functional brain networks: emerging principles. Trends in Cognitive Sciences, 17(12): 627-640 [DOI: 10.1016/j.tics.2013.09.015http://dx.doi.org/10.1016/j.tics.2013.09.015]
Menon V and Uddin L Q. 2010. Saliency, switching, attention and control: a network model of insula function. Brain Structure and Function, 214(5/6): 655-667 [DOI: 10.1007/s00429-010-0262-0http://dx.doi.org/10.1007/s00429-010-0262-0]
Molfese P J, Glen D, Mesite L, Cox R W, Hoeft F, Frost S J, Mencl W E, Pugh K R and Bandettini P A. 2021. The Haskins pediatric atlas: a magnetic-resonance-imaging-based pediatric template and atlas. Pediatric Radiology, 51(4): 628-639 [DOI: 10.1007/s00247-020-04875-yhttp://dx.doi.org/10.1007/s00247-020-04875-y]
Morris S R, Holmes R D, Dvorak A V, Liu H W, Yoo Y, Vavasour I M, Mazabel S, Mädler B, Kolind S H, Li D K B, Siegel L, Beaulieu C, MacKay A L and Laule C. 2020. Brain myelin water fraction and diffusion tensor imaging atlases for 9-10 year-old children. Journal of Neuroimaging, 30(2): 150-160 [DOI: 10.1111/jon.12689http://dx.doi.org/10.1111/jon.12689]
Mukherjee P, Miller J H, Shimony J S, Philip J V, Nehra D, Snyder A Z, Conturo T E, Neil J J and McKinstry R C. 2002. Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation. American Journal of Neuroradiology, 23(9): 1445-1456
Muzik O, Chugani D C, Juhász C, Shen C G and Chugani H T. 2000. Statistical parametric mapping: assessment of application in children. NeuroImage, 12(5): 538-549 [DOI: 10.1006/nimg.2000.0651http://dx.doi.org/10.1006/nimg.2000.0651]
Oishi K. 2021. Pediatric brain atlases and parcellations//Huang H and Roberts T P L, eds. Advances in Magnetic Resonance Technology and Applications. New York, USA: Academic Press: 241-264 [DOI: 10.1016/B978-0-12-816633-8.00016-8http://dx.doi.org/10.1016/B978-0-12-816633-8.00016-8]
Oishi K, Chang L D and Huang H. 2019. Baby brain atlases. NeuroImage, 185: 865-880 [DOI: 10.1016/j.neuroimage.2018.04.003http://dx.doi.org/10.1016/j.neuroimage.2018.04.003]
Oldham S and Fornito A. 2019. The development of brain network hubs. Developmental Cognitive Neuroscience, 36: #100607 [DOI: 10.1016/j.dcn.2018.12.005http://dx.doi.org/10.1016/j.dcn.2018.12.005]
Qin S Z, Young C B, Supekar K, Uddin L Q and Menon V. 2012. Immature integration and segregation of emotion-related brain circuitry in young children. Proceedings of the National Academy of Sciences of the United States of America, 109(20): 7941-7946 [DOI: 10.1073/pnas.1120408109http://dx.doi.org/10.1073/pnas.1120408109]
Raznahan A, Shaw P, Lalonde F, Stockman M, Wallace G L, Greenstein D, Clasen L, Gogtay N and Giedd J N. 2011. How does your cortex grow? The Journal of Neuroscience, 31(19): 7174-7177 [DOI: 10.1523/JNEUROSCI.0054-11.2011http://dx.doi.org/10.1523/JNEUROSCI.0054-11.2011]
Richards J E, Sanchez C, Phillips-Meek M and Xie W Z. 2016. A database of age-appropriate average MRI templates. NeuroImage, 124: 1254-1259 [DOI: 10.1016/j.neuroimage.2015.04.055http://dx.doi.org/10.1016/j.neuroimage.2015.04.055]
Rubio-Codina M, Attanasio O, Meghir C, Varela N and Grantham-McGregor S. 2015. The socioeconomic gradient of child development: cross-sectional evidence from children 6-42 months in Bogota. The Journal of Human Resources, 50(2): 464-483
Sanchez C E, Richards J E and Almli C R. 2012. Age-specific MRI templates for pediatric neuroimaging. Developmental Neuropsychology, 37(5): 379-399 [DOI: 10.1080/87565641.2012.688900http://dx.doi.org/10.1080/87565641.2012.688900]
Satterthwaite T D, Connolly J J, Ruparel K, Calkins M E, Jackson C, Elliott M A, Roalf D R, Hopson R, Prabhakaran K, Behr M, Qiu H J, Mentch F D, Chiavacci R, Sleiman P M A, Gur R C, Hakonarson H and Gur R E. 2016. The Philadelphia Neurodevelopmental Cohort: a publicly available resource for the study of normal and abnormal brain development in youth. NeuroImage, 124: 1115-1119 [DOI: 10.1016/j.neuroimage.2015.03.056http://dx.doi.org/10.1016/j.neuroimage.2015.03.056]
Schumann G, Loth E, Banaschewski T, Barbot A, Barker G, Büchel C, Conrod P J, Dalley J W, Flor H, Gallinat J, Garavan H, Heinz A, Itterman B, Lathrop M, Mallik C, Mann K, Martinot J L, Paus T, Poline J B, Robbins T W, Rietschel M, Reed L, Smolka M, Spanagel R, Speiser C, Stephens D N, Ströhle A, Struve M and IMAGEN Consortium. 2010. The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology. Molecular Psychiatry, 15(12): 1128-1139 [DOI: 10.1038/mp.2010.4http://dx.doi.org/10.1038/mp.2010.4]
Shaw P, Kabani N J, Lerch J P, Eckstrand K, Lenroot R, Gogtay N, Greenstein D, Clasen L, Evans A, Rapoport J L, Giedd J N and Wise S P. 2008. Neurodevelopmental trajectories of the human cerebral cortex. Journal of Neuroscience, 28(14): 3586-3594 [DOI: 10.1523/JNEUROSCI.5309-07.2008http://dx.doi.org/10.1523/JNEUROSCI.5309-07.2008]
Shin J, French L, Xu T, Leonard G, Perron M, Pike G B, Richer L, Veillette S, Pausova Z and Paus T. 2018. Cell-specific gene-expression profiles and cortical thickness in the human brain. Cerebral Cortex, 28(9): 3267-3277 [DOI: 10.1093/cercor/bhx197http://dx.doi.org/10.1093/cercor/bhx197]
Solmi M, Radua J, Olivola M, Croce E, Soardo L, Salazar De Pablo G, Il Shin J, Kirkbride J B, Jones P, Kim J H, Kim J Y, Carvalho A F, Seeman M V, Correll C U and Fusar-Poli P. 2022. Age at onset of mental disorders worldwide: large-scale meta-analysis of 192 epidemiological studies. Molecular Psychiatry, 27(1): 281-295 [DOI: 10.1038/s41380-021-01161-7http://dx.doi.org/10.1038/s41380-021-01161-7]
Somerville L H, Bookheimer S Y, Buckner R L, Burgess G C, Curtiss S W, Dapretto M, Elam J S, Gaffrey M S, Harms M P, Hodge C, Kandala S, Kastman E K, Nichols T E, Schlaggar B L, Smith S M, Thomas K M, Yacoub E, van Essen D C and Barch D M. 2018. The Lifespan Human Connectome Project in Development: a large-scale study of brain connectivity development in 5-21 year olds. NeuroImage, 183: 456-468 [DOI: 10.1016/j.neuroimage.2018.08.050http://dx.doi.org/10.1016/j.neuroimage.2018.08.050]
Steinberg L. 2008. A social neuroscience perspective on adolescent risk-taking. Developmental Review, 28(1): 78-106 [DOI: 10.1016/j.dr.2007.08.002http://dx.doi.org/10.1016/j.dr.2007.08.002]
Stiles J and Jernigan T L. 2010. The basics of brain development. Neuropsychology Review, 20(4): 327-348 [DOI: 10.1007/s11065-010-9148-4http://dx.doi.org/10.1007/s11065-010-9148-4]
Supekar K, Musen M and Menon V. 2009. Development of large-scale functional brain networks in children. PLoS Biology, 7(7): #e1000157 [DOI: 10.1371/journal.pbio.1000157http://dx.doi.org/10.1371/journal.pbio.1000157]
Supekar K, Uddin L Q, Prater K, Amin H, Greicius M D and Menon V. 2010. Development of functional and structural connectivity within the default mode network in young children. NeuroImage, 52(1): 290-301 [DOI: 10.1016/j.neuroimage.2010.04.009http://dx.doi.org/10.1016/j.neuroimage.2010.04.009]
Swartz J R and Monk C S. 2014. The role of corticolimbic circuitry in the development of anxiety disorders in children and adolescents//Andersen S L and Pine D S, eds. The Neurobiology of Childhood. Berlin, Germany: Springer: 133-148 [DOI: 10.1007/7854_2013_242http://dx.doi.org/10.1007/7854_2013_242]
Tamnes C K, Østby Y, Fjell A M, Westlye L T, Due-Tønnessen P and Walhovd K B. 2010. Brain maturation in adolescence and young adulthood: regional age-related changes in cortical thickness and white matter volume and microstructure. Cerebral Cortex, 20(3): 534-548 [DOI: 10.1093/cercor/bhp118http://dx.doi.org/10.1093/cercor/bhp118]
Tau G Z and Peterson B S. 2010. Normal development of brain circuits. Neuropsychopharmacology, 35(1): 147-168 [DOI: 10.1038/npp.2009.115http://dx.doi.org/10.1038/npp.2009.115]
Tax C M W, Bastiani M, Veraart J, Garyfallidis E and Okan Irfanoglu M. 2022. What’s new and what’s next in diffusion MRI preprocessing. NeuroImage, 249: #118830 [DOI: 10.1016/j.neuroimage.2021.118830http://dx.doi.org/10.1016/j.neuroimage.2021.118830]
Toga A W, Thompson P M and Sowell E R. 2006. Mapping brain maturation. Trends in Neurosciences, 29(3): 148-159 [DOI: 10.1016/j.tins.2006.01.007http://dx.doi.org/10.1016/j.tins.2006.01.007]
Tottenham N and Galván A. 2016. Stress and the adolescent brain: amygdala-prefrontal cortex circuitry and ventral striatum as developmental targets. Neuroscience and Biobehavioral Reviews, 70: 217-227 [DOI: 10.1016/j.neubiorev.2016.07.030http://dx.doi.org/10.1016/j.neubiorev.2016.07.030]
Uda S, Matsui M, Tanaka C, Uematsu A, Miura K, Kawana I and Noguchi K. 2015. Normal development of human brain white matter from infancy to early adulthood: a diffusion tensor imaging study. Developmental Neuroscience, 37(2): 182-194 [DOI: 10.1159/000373885http://dx.doi.org/10.1159/000373885]
Vân Phan T, Smeets D, Talcott J B and Vandermosten M. 2018. Processing of structural neuroimaging data in young children: bridging the gap between current practice and state-of-the-art methods. Developmental Cognitive Neuroscience, 33: 206-223 [DOI: 10.1016/j.dcn.2017.08.009http://dx.doi.org/10.1016/j.dcn.2017.08.009]
Wang X D, Li X H, Cho J W, Russ B E, Rajamani N, Omelchenko A, Ai L, Korchmaros A, Sawiak S, Benn R A, Garcia-Saldivar P, Wang Z, Kalin N H, Schroeder C E, Craddock R C, Fox A S, Evans A C, Messinger A, Milham M P and Xu T. 2021. U-net model for brain extraction: trained on humans for transfer to non-human primates. NeuroImage, 235: #118001 [DOI: 10.1016/j.neuroimage.2021.118001http://dx.doi.org/10.1016/j.neuroimage.2021.118001]
Wilke M, Schmithorst V J and Holland S K. 2002. Assessment of spatial normalization of whole-brain magnetic resonance images in children. Human Brain Mapping, 17(1): 48-60 [DOI: 10.1002/hbm.10053http://dx.doi.org/10.1002/hbm.10053]
Wilke M, Schmithorst V J and Holland S K. 2003. Normative pediatric brain data for spatial normalization and segmentation differs from standard adult data. Magnetic Resonance in Medicine, 50(4): 749-757 [DOI: 10.1002/mrm.10606http://dx.doi.org/10.1002/mrm.10606]
Ye H H, He H J, Fang J W, Tong Q Q, Zhou Z H and Liu H F. 2022. Research progress of quantitative multimodal brain imaging technology. Journal of Image and Graphics, 27(6): 1944-1955
叶慧慧, 何宏建, 方静宛, 童琪琦, 周子涵, 刘华锋. 2022. 大脑多模态成像技术定量研究进展. 中国图象图形学报, 27(6): 1944-1955 [DOI: 10.11834/jig.220153http://dx.doi.org/10.11834/jig.220153]
Yoon U, Fonov V S, Perusse D and Evans A C. 2009. The effect of template choice on morphometric analysis of pediatric brain data. NeuroImage, 45(3): 769-777 [DOI: 10.1016/j.neuroimage.2008.12.046http://dx.doi.org/10.1016/j.neuroimage.2008.12.046]
Zhao T D, Liao X H, Fonov V S, Wang Q S, Men W, Wang Y P, Qin S Z, Tan S P, Gao J H, Evans A, Tao S, Dong Q and He Y. 2019. Unbiased age-specific structural brain atlases for Chinese pediatric population. NeuroImage, 189: 55-70 [DOI: 10.1016/j.neuroimage.2019.01.006http://dx.doi.org/10.1016/j.neuroimage.2019.01.006]
Zhu J W, Zhang H, Chong Y S, Shek L P, Gluckman P D, Meaney M J, Fortier M V and Qiu A Q. 2021. Integrated structural and functional atlases of Asian children from infancy to childhood. NeuroImage, 245: #118716 [DOI: 10.1016/j.neuroimage.2021.118716http://dx.doi.org/10.1016/j.neuroimage.2021.118716]
Zhu Y and Li X. 2023. A survey of medical image captioning technique: encoding, decoding and latest advance. Journal of Image and Graphics, 28(7): 1990-2010
朱翌, 李秀. 2023. 医学图像描述综述: 编码、解码及最新进展. 中国图象图形学报, 28(7): 1990-2010 [DOI: 10.11834/jig.211021http://dx.doi.org/10.11834/jig.211021]
相关作者
相关机构