共性特征学习的高泛化伪造指纹检测
High-generalization spoofing fingerprint detection based on commonality feature learning
- 2024年29卷第9期 页码:2780-2792
收稿:2023-09-12,
修回:2024-01-04,
纸质出版:2024-09-16
DOI: 10.11834/jig.230638
移动端阅览

浏览全部资源
扫码关注微信
收稿:2023-09-12,
修回:2024-01-04,
纸质出版:2024-09-16
移动端阅览
目的
2
指纹识别技术已大规模应用于人们的日常生活中,如身份鉴定、指纹支付与考勤等。然而,最新研究表明这些系统极易遭受伪造指纹的欺骗攻击,因此在使用指纹认证用户身份前,鉴别待测指纹的真伪至关重要。伪造指纹的制作材料具有多样性,现有工作忽视了不同材料伪造指纹之间数据分布的关联性,致使跨材料检测泛化性普遍较低。因此,本文通过分析不同材料伪造指纹数据间的分布关联性,挖掘不同伪造指纹间的材料域不变伪造特征,提出了一种基于共性特征学习的高泛化伪造指纹检测方法。
方法
2
首先,为了表征和学习不同材料伪造指纹间的特征,设计了一种多尺度伪造特征提取器(multi-scale spoofing feature extractor, MSFE),包含一个多尺度空间通道(multi-scale spatial-channel, MSC)注意力模块,以学习真假指纹类间的细粒度差异特征。然后,为了进一步分析不同材料伪造指纹数据间的分布关联性,又构造了一种共性伪造特征提取器(common spoofing feature extractor, CSFE),在MSFE先验知识的引导下进行多任务的材料域不变伪造特征学习。最后,设计一个材料鉴别器对学习到的共性伪造特征进行约束,同时构建一个自适应联合优化损失模块来平衡多个模块在训练过程中的损失权重,以进一步提高面对未知材料伪造指纹检测时的泛化性。
结果
2
在两个公开的指纹数据集(LivDet(liveness detection competition)2017和LivDet2019)上进行了跨材料测试,实验结果表明所提算法相较对比工作,ACE(average classification error)降低了1.34%,TDR(true detection rate)提高了1.43%,表现出较高的泛化性。
结论
2
本文算法在ACE和TDR方面均取得优异性能。此外,当面对未知材料的伪造指纹检测时,同样表现出较强的泛化性。
Objective
2
The realm of our daily lives has witnessed the ubiquitous integration of fingerprint recognition technology in domains, such as authorized identification, fingerprint-based payments, and access control systems. However, recent studies have revealed the vulnerability of these systems to spoofing fingerprint attacks. Attackers can deceive authentication systems by imitating fingerprints using artificial materials. Thus, the authenticity of fingerprint under scrutiny must be ascertained prior to its use to authenticate the user's identity. The development of a spoofing fingerprint detection technology has attracted extensive attention from the academia and industry. The creation of spoofing fingerprints involve the use of diverse materials. The present research disregards the correlation of data distribution among spoofing fingerprints crafted from various materials, which consequently leads to limited generalization in cross-material detection. Hence, a high-generalization spoofing fingerprint detection method based on commonality feature learning is proposed through the analysis of the distribution correlation among counterfeit fingerprint data originating from diverse materials and the exploration of invariant forgery features within the material domain of distinct counterfeit fingerprints.
Method
2
First, to characterize and learn the features of spoofing fingerprints obtained using various materials, a multiscale spoofing feature extractor (MFSE) is designed, and it includes a multiscale spatial-channel attention module to allow the MFSE to pay more attention to fine-grained differences between live and fake fingerprints and improve the capability of the network to learn spoofing features. Then, a common spoofing feature extractor (CSFE) is constructed for further analysis of the distribution correlation between spoofing fingerprint data of different materials and extraction of common spoofing features between spoofing fingerprints made from various materials. Under the guidance of prior knowledge on MFSE, CSFE calculates the distance of the feature distribution extracted by MFSE and CSFE in the regenerated Hilbert space through the feature distance measurement module and minimizes the maximum mean difference (MMD) of data distributions to reduce the distance between them. The multitask material domain invariant spoofing feature learning is implemented, and a material discriminator is designed to constrain the learned common spoofing features and remove specific material information from the spoofing fingerprint. CSFE involves the calculation of multiple loss functions. Manually setting the weight ratio of these loss functions may prevent the improvement of model performance. Therefore, an adaptive joint-optimization loss function is used to balance the loss values of each module and further expand the generalization capability of the network in the presence of unknown material spoofing fingerprints. The training process involves the use of a fingerprint image containing two kinds of labels, which include the authenticity label of the fingerprint and material label of the forged fingerprint. The true fingerprint lacks material properties and is marked as 0. Forged fingerprints are numbered from 1 based on the material category, and the authenticity of fingerprints and type of forged materials are assessed based on the authenticity and material labels, respectively. The random gradient descent method is used for optimization, and the learning rate setting is from 0.001, which is reduced by 0.1 time per 10 epoch.
Result
2
The experimental results on two public datasets revealed that the algorithm proposed in this paper achieved the best comprehensive performance in the cross-material detection of forged fingerprints. On the GreenBit sensor of LivDet2017 dataset, average classification error (ACE) reduced the rate by 0.16% compared with the second-ranked spoofing fingerprint detection model and increased true detection rate (TDR) by 2.4%. On the Digital persona sensor of LivDet2017 dataset, ACE reduced the rate by 0.26% compared with the second-ranked forgery fingerprint detection model and increased TDR by 0.7%. On LivDet2019 dataset, ACE reduces the rate by 1.34% on average compared with the second-ranked spoofing fingerprint detection model and increases TDR by 1.43% on average. These findings indicate a an increase in the corresponding generalization. A comparative experiment was performed to verify the superiority of the multi-scale spatial-channel (MSC) attention module to the convolutional block attention module (CBAM) module in spoofing fingerprint detection. To better evaluate our method, we conducted a series of ablation experiments to verify each module involved in common feature extraction training to aid in the cross-material spoofing fingerprint detection task. To reveal the improved generalization performance of CSFE compared with MFSE in cross-material spoofing fingerprint detection, this paper visualized the distribution of the proposed features using the t-distributed stochastic neighbor embedding algorithm.
Conclusion
2
The method proposed in this paper achieved better detection results than other methods and exhibited a higher generalization performance in the detection of spoofing fingerprints made of unknown materials. Compared with spoofing fingerprint detection using the same material, the extant spoofing fingerprint detection technique harbors substantial scope for the refinement of its generalization capabilities for cross-material detection. Cross-material spoofing fingerprint detection aptly aligns with practical requirements and bears immense importance in the realm of research pursuits.
Abdullahi S M , Sun S F , Malik A , Khudeyberdiev O and Basheer R . 2022 . Spoofed fingerprint image detection using local phase patch segment extraction and a lightweight network // Proceedings of the 18th IFIP WG 11.9 International Conference on Advances in Digital Forensics XVIII . Virtual Event : Springer: 85 - 105 [ DOI: 10.1007/978-3-031-10078-9_5 http://dx.doi.org/10.1007/978-3-031-10078-9_5 ]
Abrishambaf R , Demirel H and Kale I . 2008 . A fully CNN based fingerprint recognition system // Proceedings of the 11th International Workshop on Cellular Neural Networks and Their Applications . Santiago de Composteia, Spain : IEEE: 146 - 149 [ DOI: 10.1109/CNNA.2008.4588667 http://dx.doi.org/10.1109/CNNA.2008.4588667 ]
Ametefe D S , Sarnin S S , Ali D M and Zaheer M Z . 2022 . Fingerprint liveness detection schemes: a review on presentation attack . Computer Methods in Biomechanics and Biomedical Engineering : Imaging and Visualization , 10 ( 2 ): 217 - 240 [ DOI: 10.1080/21681163.2021.2012826 http://dx.doi.org/10.1080/21681163.2021.2012826 ]
Anusha B V S , Banerjee S and Chaudhuri S . 2020 . DeFraudNet: End2End fingerprint spoof detection using patch level attention // Proceedings of 2020 IEEE Winter Conference on Applications of Computer Vision . Snowmass, USA : IEEE: 2684 - 2693 [ DOI: 10.1109/WACV45572.2020.9093397 http://dx.doi.org/10.1109/WACV45572.2020.9093397 ]
Barhoumi S , Khmila H and Kallel I K . 2021 . Efficient fingerprint analysis based on sweat pore map //Derbel N and Kanoun O, eds. Advanced Methods for Human Biometrics . Cham : Springer: 3 - 20 [ DOI: 10.1007/978-3-030-81982-8_1 http://dx.doi.org/10.1007/978-3-030-81982-8_1 ]
Chiroma H . 2021 . Deep learning algorithms based fingerprint authentication: systematic literature review . Journal of Artificial Intelligence and Systems , 3 ( 1 ): 157 - 197 [ DOI: 10.33969/AIS.2021.31010 http://dx.doi.org/10.33969/AIS.2021.31010 ]
Chugh T , Cao K and Jain A K . 2018 . Fingerprint spoof buster: use of minutiae-centered patches . IEEE Transactions on Information Forensics and Security , 13 ( 9 ): 2190 - 2202 [ DOI: 10.1109/TIFS.2018.2812193 http://dx.doi.org/10.1109/TIFS.2018.2812193 .]
Cipolla R , Gal Y and Kendall A . 2018 . Multi-task learning using uncertainty to weigh losses for scene geometry and semantics // Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Salt Lake City, USA : IEEE: 7482 - 7491 [ DOI: 10.1109/CVPR.2018.00781 http://dx.doi.org/10.1109/CVPR.2018.00781 ]
Gan J Y , Qi L , Qin C B and He G H . 2019 . Lightweight fingerprint classification model combined with transfer learning . Journal of Image and Graphics , 24 ( 7 ): 1086 - 1095
甘俊英 , 戚玲 , 秦传波 , 何国辉 . 2019 . 结合迁移学习的轻量级指纹分类模型 . 中国图象图形学报 , 24 ( 7 ): 1086 - 1095 [ DOI: 10.11834/jig.180499 http://dx.doi.org/10.11834/jig.180499 ]
Gonzlez-Soler L J , Gomez-Barrero M , Chang L , Perez-Suarez A and Busch C . 2021 . Fingerprint presentation attack detection based on local features encoding for unknown attacks . IEEE Access , 9 : 5806 - 5820 [ DOI: 10.1109/ACCESS.2020.3048756 http://dx.doi.org/10.1109/ACCESS.2020.3048756 ]
Hu C , Zhu L Q , Qiu W B and Wu W J . 2022 . Data augmentation vision transformer for fine-grained image classification [EB/OL]. [ 2023-08-20 ]. https://arxiv.org/pdf/2211.12879.pdf https://arxiv.org/pdf/2211.12879.pdf
Jia X Y , Zhang W Z , Li W W and Huang Z Q . 2021 . Feature representation method for heterogeneous defect prediction based on variational autoencoders . Journal of Software , 32 ( 7 ): 2204 - 2218
贾修一 , 张文舟 , 李伟湋 , 黄志球 . 2021 . 基于变分自编码器的异构缺陷预测特征表示方法 . 软件学报 , 32 ( 7 ): 2204 - 2218 [ DOI: 10.13328/j.cnki.jos.006257 http://dx.doi.org/10.13328/j.cnki.jos.006257 ]
Karampidis K , Rousouliotis M , Linardos E and and Kavallieratou E . 2021 . A comprehensive survey of fingerprint presentation attack detection . Journal of Surveillance, Security and Safety , 2 ( 4 ): 117 - 161 [ DOI: 10.20517/jsss.2021.07 http://dx.doi.org/10.20517/jsss.2021.07 ]
Khade S , Thepade S D and Ambedkar A . 2018 . Fingerprint liveness detection using directional ridge frequency with machine learning classifiers // Proceedings of the 4th International Conference on Computing Communication Control and Automation (ICCUBEA) . Pune, India : IEEE: 1 - 5 [ DOI: 10.1109/ICCUBEA.2018.8697895 http://dx.doi.org/10.1109/ICCUBEA.2018.8697895 ]
Li Y , Tian X M , Gong M M , Liu Y J , Liu T L , Zhang K and Tao D C . 2018 . Deep domain generalization via conditional invariant adversarial networks // Proceedings of the 15th European Conference on Computer Vision . Munich, Germany : Springer: 647 - 663 [ https://doi.org/10.1007/978-3-030-01267-0_38 https://doi.org/10.1007/978-3-030-01267-0_38 ]
Liu F , Kong Z , Liu H Z , Zhang W T and Shen L L . 2022 . Fingerprint presentation attack detection by channel-wise feature denoising . IEEE Transactions on Information Forensics and Security , 17 : 2963 - 2976 [ DOI: 10.1109/TIFS.2022.3197058 http://dx.doi.org/10.1109/TIFS.2022.3197058 ]
Lu X W , Ding W Q , Li H Y , Yu P F and Gu J . 2021 . Fine-grained image classification algorithm based on attention self-supervision // Proceedings of the 5th IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC) . Chongqing, China : IEEE: 517 - 521 [ DOI: 10.1109/IAEAC50856.2021.9390994 http://dx.doi.org/10.1109/IAEAC50856.2021.9390994 ]
Maltoni D , Maio D , Jain A K and Feng J J . 2022 . Latent fingerprint recognition //Maltoni D, Maio D, Jain A K and Feng J J, eds. Handbook of Fingerprint Recognition . Cham : Springer: 339 - 383 [ DOI: 10.1007/978-3-030-83624-5_6 http://dx.doi.org/10.1007/978-3-030-83624-5_6 ]
Mura V , Orrù G , Casula R , Sibiriu A , Loi G , Tuveri P , Ghiani L and Marcialis G L . 2018 . LivDet 2017 fingerprint liveness detection competition 2017//Proceedings of 2018 International Conference on Biometrics (ICB) . Gold Coast, Australia : IEEE : 297 - 302 [ DOI: 10.1109/ICB2018.2018.00052 http://dx.doi.org/10.1109/ICB2018.2018.00052 ]
Nguyen D L and Jain A K . 2019 . End-to-end pore extraction and matching in latent fingerprints: going beyond minutiae [EB/OL]. [ 2023-08-20 ]. https://arxiv.org/pdf/1905.11472.pdf https://arxiv.org/pdf/1905.11472.pdf
Orrù G , Casula R , Tuveri P , Bazzoni C , Dessalvi G , Micheletto M , Ghiani L and Marcialis G L . 2019 . LivDet in action-fingerprint liveness detection competition 2019//Proceedings of 2019 International Conference on Biometrics (ICB) . Crete, Greece : IEEE : 1 - 6 [ DOI: 10.1109/ICB45273.2019.8987281 http://dx.doi.org/10.1109/ICB45273.2019.8987281 ]
Rai A , Anshul A , Jha A , Jain P , Sharma R P and Dey S . 2023 . An open patch generator based fingerprint presentation attack detection using generative adversarial network . Multimedia Tools and Applications , 83 : 27723 - 27746 [ DOI: 10.1007/s11042-023-16503-6 http://dx.doi.org/10.1007/s11042-023-16503-6 ]
Shaheed K , Mao A H , Qureshi I , Kumar M , Abbas Q , Ullah I and Zhang X M . 2021 . A systematic review on physiological-based biometric recognition systems: current and future trends . Archives of Computational Methods in Engineering , 28 ( 7 ): 4917 - 4960 [ DOI: 10.1007/s11831-021-09560-3 http://dx.doi.org/10.1007/s11831-021-09560-3 ]
Sharma R P and Dey S . 2019 . Fingerprint liveness detection using local quality features . The Visual Computer , 35 ( 10 ): 1393 - 1410 [ DOI: 10.1007/s00371-018-01618-x http://dx.doi.org/10.1007/s00371-018-01618-x ]
Sun Z N , He R , Wang L , Kan M N , Feng J J , Zheng F , Zheng W S , Zuo W M , Kang W X , Deng W H , Zhang J , Han H , Shan S G , Wang Y L , Ru Y W , Zhu Y H , Liu Y F and He Y . 2021 . Overview of Biometrics research . Journal of Image and Graphics , 26 ( 6 ): 1254 - 1329
孙哲南 , 赫然 , 王亮 , 阚美娜 , 冯建江 , 郑方 , 郑伟诗 , 左旺孟 , 康文雄 , 邓伟洪 , 张杰 , 韩琥 , 山世光 , 王云龙 , 茹一伟 , 朱宇豪 , 刘云帆 , 何勇 . 2021 . 生物特征识别学科发展报告 . 中国图象图形学报 , 26 ( 6 ): 1254 - 1329 [ DOI: 10.11834/jig.210078 http://dx.doi.org/10.11834/jig.210078 ]
Valdes-Ramirez D , Medina-Pérez M A , Monroy R , Loyola-Gonzalez O , Rodriguez J , Morales A and Herrera F . 2019 . A review of fingerprint feature representations and their applications for latent fingerprint identification: trends and evaluation . IEEE Access , 7 : 48484 - 48499 [ DOI: 10.1109/ACCESS.2019.2909497 http://dx.doi.org/10.1109/ACCESS.2019.2909497 ]
van der Maaten L and Hinton G . 2008 . Visualizing data using t-SNE . Journal of Machine Learning Research , 9 ( 86 ): 2579 - 2605
Wang J , Yu X H and Gao Y S . 2021 . Mask guided attention for fine-grained patchy image classification // Proceedings of 2021 IEEE International Conference on Image Processing (ICIP) . Anchorage, USA : IEEE: 1044 - 1048 [ DOI: 10.1109/ICIP42928.2021.9506424 http://dx.doi.org/10.1109/ICIP42928.2021.9506424 ]
Wang R Y , Chu B L , Yang Z and Zhou L N . 2022 . An overview of visual DeepFake detection techniques . Journal of Image and Graphics , 27 ( 1 ): 43 - 62
王任颖 , 储贝林 , 杨震 , 周琳娜 . 2022 . 视觉深度伪造检测技术综述 . 中国图象图形学报 , 27 ( 1 ): 43 - 62 [ DOI: 10.11834/jig.210410 http://dx.doi.org/10.11834/jig.210410 ]
Woo S , Park J , Lee J Y and Kweon I S . 2018 . CBAM: convolutional block attention module // Proceedings of the 15th European Conference on Computer Vision (ECCV) . Munich, Germany : Springer: 3 - 19 [ DOI: 10.1007/978-3-030-01234-2_1 http://dx.doi.org/10.1007/978-3-030-01234-2_1 ]
Xia Z H , Lv R , Zhu Y F , Ji P , Sun H Y and Shi Y Q . 2017 . Fingerprint liveness detection using gradient-based texture features . Signal, Image and Video Processing , 11 ( 2 ): 381 - 388 [ DOI: 10.1007/s11760-016-0936-z http://dx.doi.org/10.1007/s11760-016-0936-z ]
Yang W C , Wang S , Hu J K , Zheng G L and Valli C . 2019 . Security and accuracy of fingerprint-based biometrics: a review . Symmetry , 11 ( 2 ): # 141 [ DOI: 10.3390/sym11020141 http://dx.doi.org/10.3390/sym11020141 ]
Yuan C S , Yu P P , Xia Z H , Sun X M and Wu Q M J . 2022 . FLD-SRC: fingerprint liveness detection for AFIS based on spatial ridges continuity . IEEE Journal of Selected Topics in Signal Processing , 16 ( 4 ): 817 - 827 [ DOI: 10.1109/JSTSP.2022.3174655 http://dx.doi.org/10.1109/JSTSP.2022.3174655 ]
Zeng F F , Hu S D and Xiao K . 2019 . Research on partial fingerprint recognition algorithm based on deep learning . Neural Computing and Applications , 31 ( 9 ): 4789 - 4798 [ DOI: 10.1007/s00521-018-3609-8 http://dx.doi.org/10.1007/s00521-018-3609-8 ]
Zhang Y L , Fang S S , Xie Y and Xu T T . 2014 . Fake fingerprint detection based on wavelet analysis and local binary pattern // Proceedings of the 9th Chinese Conference on Biometric Recognition . Shenyang, China : Springer: 191 - 198 [ DOI: 10.1007/978-3-319-12484-1_21 http://dx.doi.org/10.1007/978-3-319-12484-1_21 ]
相关作者
相关机构
京公网安备11010802024621