人脸年龄合成的生成对抗网络方法综述
Overview of human-facial-related age syntheis based generative adversarial network methods
- 2023年28卷第10期 页码:3004-3024
纸质出版日期: 2023-10-16
DOI: 10.11834/jig.220842
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2023-10-16 ,
移动端阅览
王艺博, 张珂, 孔英会, 于婷婷, 赵士玮. 2023. 人脸年龄合成的生成对抗网络方法综述. 中国图象图形学报, 28(10):3004-3024
Wang Yibo, Zhang Ke, Kong Yinghui, Yu Tingting, Zhao Shiwei. 2023. Overview of human-facial-related age syntheis based generative adversarial network methods. Journal of Image and Graphics, 28(10):3004-3024
年龄信息作为人类生物特征识别的重要组成部分,在社会保障和数字娱乐等领域具有广泛的应用前景。人脸年龄合成技术由于其广泛的应用价值,受到了越来越多学者的重视,已经成为计算机视觉领域的重要研究方向之一。随着深度学习的快速发展,基于生成对抗网络的人脸年龄合成技术已成为研究热点。尽管基于生成对抗网络的人脸年龄合成方法取得了不错的成果,但生成的人脸年龄图像仍存在图像质量较差、真实感较低、年龄转换效果和多样性不足等问题。主要因为当前人脸年龄合成研究仍存在以下困难:1)现有人脸年龄合成数据集的限制;2)引入人脸年龄合成的先验知识不足;3)人脸年龄图像的细粒度性被忽视;4)高分辨率下的人脸年龄合成问题;5)目前人脸年龄合成方法的评价标准不规范。本文对目前人脸年龄合成技术进行全面综述,以人脸年龄合成方法为研究对象,阐述其研究现状。通过调研文献,对人脸年龄合成方法进行分类,重点介绍了基于生成对抗网络的人脸年龄合成方法。此外,本文还讨论了常用的人脸年龄合成数据集及评价指标,分析了各种人脸年龄合成方法的基本思想、特点及其局限性,对比了部分代表方法的性能,指出了该领域目前存在的挑战并提供了一些具有潜力的研究方向,为研究者们解决存在的问题提供便利。
Human-biometric age information has been widely used for such domains like public security and digital entertainment. Such of human-facial-related age synthesis methods are mainly divided into traditional image processing methods and machine learning-based methods. Traditional image processing methods are divided into physics-based methods and prototype-based methods. Machine learning based method is focused on the model-based method, which can be divided into parametric linear model method, deep generative model method based on the time frame and generative adversarial network (GAN)-based method. The physics-based methods are focused on intuitive facial features only, for which some subtle changes are inevitably ignored, resulting in the irrationality of synthetic images. In addition, it requires a large number of facial samples for the same person at several of ages, which is costly and labor-intensive to be collected. The aging patterns generated by the prototype-based method are obtained by faces-related averaging value, and some important personalized features may be averaged, resulting in the loss of personal identity. Severe ghosting artifacts will be appeared in their synthetic images while some dictionary-based learning methods are used to preserve personalized features to some extent. Its related parametric linear model method and the deep generative model method based on the time frame are still challenged to find a general model suitable for a specific age group, and its following model established is still linear, so the quality of its synthetic image is deficient as well. The emerging GAN-based method can be used to train models using deep convolution network. Aging patterns-related age groups is learnt in terms of the generative adversarial learning mechanism, different types of loss functions are introduced for various problems appearing in the image, and the minimum value of the perceptual loss of the original image is sorted out. Aging mode can be realized in the input face image, and identity information can be preserved simultaneously. Recent GAN framework is derived of a series of variant models and has been optimizing consistently. GAN-based age synthesis methods can be segmented into four sorts of categories: GAN-classical, GAN-sequential, GAN-translational and GAN-conditional. For classical GAN method, it can be used to simulate face aging. However, the input information is not fully considered, which affects the identity retention, and all age maps and networks are limited under the control of age conditions, and the age accuracy of the generated image need to be optimized further. For sequential GAN method, it focuses on the sequential relationship of datasets, and there is a severe dependency. If the output of a certain model goes wrong, the performance of the whole model will be affected. Additionally, it requires consistent and completed images for each age group. The potentials of translational GAN is that a large number of photos of the same person are not required at different ages, and it needs sufficient images for each age group in the datasets only. Conditional GAN requires clear and correct labels for datasets. Compared to the methods based on translational GAN and sequential GAN, conditional GAN is extremely linked to the given limited tags in the datasets, and it is difficult to get refined control further. GAN-based methods can be used to improve the quality of generated images, but there are still some challenging problems to be resolved. Although various of face age synthesis methods based on generative adversarial network has achieved considerable progress, the generated face age image still has some problems, such as poor image quality, low realism, insufficient age transition effect and diversity. At present, the research of face age synthesis is still facing the following problems and challenges: 1) the limitations of existing face age synthesis datasets; 2) lack of prior knowledge of face age synthesis; 3) the ignored fine granularity of face age image; 4) face-related age synthesis at high resolution; and 5) current non-standardized evaluation of face age synthesis methods. Our literature review of the current face age synthesis technology is proposed, and current research situation is reviewed based on current facial age synthesis method as well. The methods of facial age synthesis can be classified, and generative adversarial network based method can be focused on as well. The commonly-used face age synthesis datasets and evaluation indicators are discussed, and the basic ideas, characteristics, and limitations of various face age synthesis methods are analyzed further. We also compare the performance of several representative methods on popular age synthesis datasets. We also predict some potential research directions and its in-depth development of related technologies.
人脸年龄合成图像生成人脸图像数据集人脸老化深度生成方法生成对抗网络(GAN)
face age synthesisimage generationface image databaseface agingdeep generative approachgenerative adversarial network (GAN)
Alaluf Y, Patashnik O and Cohen-Or D. 2021. Only a matter of style: age transformation using a style-based regression model. ACM Transactions on Graphics, 40(4): #45 [DOI: 10.1145/3450626.3459805http://dx.doi.org/10.1145/3450626.3459805]
Atkale D V, Pawar M M, Deshpande S C and Yadav D M. 2022. Multi-scale feature fusion model followed by residual network for generation of face aging and de-aging. Signal, Image and Video Processing, 16(3): 753-761 [DOI: 10.1007/s11760-021-02015-zhttp://dx.doi.org/10.1007/s11760-021-02015-z]
Blanz V and Vetter T. 1999. A morphable model for the synthesis of 3D faces//Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques. New York, USA: ACM: 187-194 [DOI: 10.1145/311535.311556http://dx.doi.org/10.1145/311535.311556]
Cao Y J, Jia L L, Chen Y X, Lin N and Li X X. 2018. Review of computer vision based on generative adversarial networks. Journal of Image and Graphics, 23(10): 1433-1449
曹仰杰, 贾丽丽, 陈永霞, 林楠, 李学相. 2018. 生成式对抗网络及其计算机视觉应用研究综述. 中国图象图形学报, 23(10): 1433-1449 [DOI: 10.11834/jig.180103http://dx.doi.org/10.11834/jig.180103]
Chen B C, Chen C S and Hsu W H. 2015. Face recognition and retrieval using cross-age reference coding with cross-age celebrity dataset. IEEE Transactions on Multimedia, 17(6): 804-815 [DOI: 10.1109/TMM.2015.2420374http://dx.doi.org/10.1109/TMM.2015.2420374]
Cootes T F, Edwards G J and Taylor C J. 2001. Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6): 681-685 [DOI: 10.1109/34.927467http://dx.doi.org/10.1109/34.927467]
Deb D, Aggarwal D and Jain A K. 2021. Identifying missing children: face age-progression via deep feature aging//Proceedings of the 25th International Conference on Pattern Recognition. Milan, Italy: IEEE: 10540-10547 [DOI: 10.1109/ICPR48806.2021.9411913http://dx.doi.org/10.1109/ICPR48806.2021.9411913]
Duan M X, Li K L, Liao Q and Tian Q. 2022. DEF-Net: a face aging model by using different emotional learnings. IEEE Transactions on Circuits and Systems for Video Technology, 32(5): 3012-3022 [DOI: 10.1109/TCSVT.2021.3096061http://dx.doi.org/10.1109/TCSVT.2021.3096061]
Duong C N, Luu K, Quach K G and Bui T D. 2016. Longitudinal face modeling via temporal deep restricted boltzmann machines//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 5772-5780 [DOI: 10.1109/CVPR.2016.622http://dx.doi.org/10.1109/CVPR.2016.622]
Duong C N, Quach K G, Luu K, Le T H N and Savvides M. 2017. Temporal non-volume preserving approach to facial age-progression and age-invariant face recognition//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 3755-3763 [DOI: 10.1109/ICCV.2017.403http://dx.doi.org/10.1109/ICCV.2017.403]
Duong C N, Quach K G, Luu K, Le T H N, Savvides M and Bui T D. 2019. Learning from longitudinal face demonstration-where tractable deep modeling meets inverse reinforcement learning. International Journal of Computer Vision, 127(6/7): 957-971 [DOI: 10.1007/s11263-019-01165-5http://dx.doi.org/10.1007/s11263-019-01165-5]
Eidinger E, Enbar R and Hassner T. 2014. Age and gender estimation of unfiltered faces. IEEE Transactions on Information Forensics and Security, 9(12): 2170-2179 [DOI: 10.1109/TIFS.2014.2359646http://dx.doi.org/10.1109/TIFS.2014.2359646]
Fang H, Deng W H, Zhong Y Y and Hu J N. 2020. Triple-GAN: progressive face aging with triple translation loss//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle, USA: IEEE: 3500-3509 [DOI: 10.1109/CVPRW50498.2020.00410http://dx.doi.org/10.1109/CVPRW50498.2020.00410]
Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A and Bengio Y. 2014. Generative adversarial nets//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada: MIT Press: 2672-2680
He K , Zhang X Y, Ren S Q and Sun J. 2016. Deep residual learning for image recognition//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas, USA: IEEE: 770-778[DOI: 10.1109/CVPR.2016.90http://dx.doi.org/10.1109/CVPR.2016.90]
He S, Liao W T, Yang M Y, Song Y Z, Rosenhahn B and Xiang T. 2021. Disentangled lifespan face synthesis//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal, Canada: IEEE: 3857-3866 [DOI: 10.1109/ICCV48922.2021.00385http://dx.doi.org/10.1109/ICCV48922.2021.00385]
He Z L, Kan M N, Shan S G and Chen X L. 2019. S2GAN: share aging factors across ages and share aging trends among individuals//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South): IEEE: 9439-9448 [DOI: 10.1109/ICCV.2019.00953http://dx.doi.org/10.1109/ICCV.2019.00953]
Heusel M, Ramsauer H, Unterthiner T, Nessler B and Hochreiter S. 2017. GANs trained by a two time-scale update rule converge to a local Nash equilibrium//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: Curran Associates Inc.: 6629-6640
Huang Z Z, Chen S Z, Zhang J P and Shan H M. 2021a. PFA-GAN: progressive face aging with generative adversarial network. IEEE Transactions on Information Forensics and Security, 16: 2031-2045 [DOI: 10.1109/TIFS.2020.3047753http://dx.doi.org/10.1109/TIFS.2020.3047753]
Huang Z Z, Chen S Z, Zhang J P and Shan H M. 2021b. AgeFlow: conditional age progression and regression with normalizing flows [EB/OL]. [2022-07-10]. https://arxiv.org/pdf/2105.07239.pdfhttps://arxiv.org/pdf/2105.07239.pdf
Huang Z Z, Zhang J P and Shan H M. 2021c. When age-invariant face recognition meets face age synthesis: a multi-task learning framework//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE: 7278-7287 [DOI: 10.1109/CVPR46437.2021.00720http://dx.doi.org/10.1109/CVPR46437.2021.00720]
Jeon S, Lee P, Hong K and Byun H. 2021. Continuous face aging generative adversarial networks//Proceedings of 2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Toronto, Canada: IEEE: 1995-1999 [DOI: 10.1109/ICASSP39728.2021.9414429http://dx.doi.org/10.1109/ICASSP39728.2021.9414429]
Johnson J, Alahi A and Li F F. 2016. Perceptual losses for real-time style transfer and super-resolution//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, the Netherlands: Springer: 694-711 [DOI: 10.1007/978-3-319-46475-6_43http://dx.doi.org/10.1007/978-3-319-46475-6_43]
Karras T, Laine S and Aila T. 2019. A style-based generator architecture for generative adversarial networks//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 4396-4405 [DOI: 10.1109/CVPR.2019.00453http://dx.doi.org/10.1109/CVPR.2019.00453]
Karras T, Laine S, Aittala M, Hellsten J, Lehtinen J and Aila T. 2020. Analyzing and improving the image quality of stylegan//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 8107-8116 [DOI: 10.1109/CVPR42600.2020.00813http://dx.doi.org/10.1109/CVPR42600.2020.00813]
Kazemi V and Sullivan J. 2014. One millisecond face alignment with an ensemble of regression trees//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE: 1867-1874 [DOI: 10.1109/CVPR.2014.241http://dx.doi.org/10.1109/CVPR.2014.241]
Kemelmacher-Shlizerman I, Suwajanakorn S and Seitz S M. 2014. Illumination-aware age progression//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE: 3334-3341 [DOI: 10.1109/CVPR.2014.426http://dx.doi.org/10.1109/CVPR.2014.426]
Lanitis A, Taylor C J and Cootes T F. 2002. Toward automatic simulation of aging effects on face images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(4): 442-455 [DOI: 10.1109/34.993553http://dx.doi.org/10.1109/34.993553]
LeCun Y, Bengio Y and Hinton G. 2015. Deep learning. Nature, 521(7553): 436-444 [DOI: 10.1038/nature14539http://dx.doi.org/10.1038/nature14539]
Lee H, Ekanadham C and Ng A Y. 2007. Sparse deep belief net model for visual area V2//Proceedings of the 20th International Conference on Neural Information Processing Systems. Vancouver, Canada: Curran Associates Inc.: 873-880 [DOI: 10.5555/2981562.2981672http://dx.doi.org/10.5555/2981562.2981672]
Li P P, Hu Y B, Li Q, He R and Sun Z N. 2018. Global and local consistent age generative adversarial networks//Proceedings of the 24th International Conference on Pattern Recognition. Beijing, China: IEEE: 1073-1078 [DOI: 10.1109/ICPR.2018.8545119http://dx.doi.org/10.1109/ICPR.2018.8545119]
Li P P, Huang H B, Hu Y B, Wu X, He R and Sun Z N. 2020a. Hierarchical face aging through disentangled latent characteristics//Proceedings of the 16th European Conference on Computer Vision. Glasgow, UK: Springer: 86-101 [DOI: 10.1007/978-3-030-58580-8_6http://dx.doi.org/10.1007/978-3-030-58580-8_6]
Li Q, Liu Y F and Sun Z N. 2020b. Age progression and regression with spatial attention modules. Proceedings of the AAAI Conference on Artificial Intelligence, 34(7): 11378-11385 [DOI: 10.1609/aaai.v34i07.6800http://dx.doi.org/10.1609/aaai.v34i07.6800]
Li Z Q, Jiang R W and Aarabi P. 2021. Continuous face aging via self-estimated residual age embedding//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE: 15003-15012 [DOI: 10.1109/CVPR46437.2021.01476http://dx.doi.org/10.1109/CVPR46437.2021.01476]
Liu Y F, Li Q and Sun Z N. 2019. Attribute-aware face aging with wavelet-based generative adversarial networks//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 11869-11878 [DOI: 10.1109/CVPR.2019.01215http://dx.doi.org/10.1109/CVPR.2019.01215]
Liu Y F, Li Q, Sun Z N and Tan T N. 2021. A3GAN: an attribute-aware attentive generative adversarial network for face aging. IEEE Transactions on Information Forensics and Security, 16: 2776-2790 [DOI: 10.1109/TIFS.2021.3065499http://dx.doi.org/10.1109/TIFS.2021.3065499]
Liu Z W, Luo P, Wang X G and Tang X O. 2015. Deep learning face attributes in the wild//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE: 3730-3738[DOI: 10.1109/ICCV.2015.425http://dx.doi.org/10.1109/ICCV.2015.425]
Olshausen B A and Field D J. 1997. Sparse coding with an overcomplete basis set: a strategy employed by V1? Vision Research, 37(23): 3311-3325 [DOI: 10.1016/S0042-6989(97)00169-7http://dx.doi.org/10.1016/S0042-6989(97)00169-7]
Or-El R, Sengupta S, Fried O, Shechtman E and Kemelmacher-Shlizerman I. 2020. Lifespan age transformation synthesis//Proceedings of the 16th European Conference on Computer Vision. Glasgow, UK: Springer: 739-755 [DOI: 10.1007/978-3-030-58539-6_44http://dx.doi.org/10.1007/978-3-030-58539-6_44]
Palsson S, Agustsson E, Timofte R and van Gool L. 2018. Generative adversarial style transfer networks for face aging//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City, USA: IEEE: 2084-2092 [DOI: 10.1109/CVPRW.2018.00282http://dx.doi.org/10.1109/CVPRW.2018.00282]
Panis G, Lanitis A, Tsapatsoulis N and Cootes T F. 2016. Overview of research on facial ageing using the FG-NET ageing database. IET Biometrics, 5(2): 37-46 [DOI: 10.1049/IET-BMT.2014.0053http://dx.doi.org/10.1049/IET-BMT.2014.0053]
Park U, Tong Y Y and Jain A K. 2010. Age-invariant face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(5): 947-954 [DOI: 10.1109/TPAMI.2010.14http://dx.doi.org/10.1109/TPAMI.2010.14]
Ramanathan N and Chellappa R. 2006. Modeling age progression in young faces//Proceedings of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE: 387-394 [DOI: 10.1109/CVPR.2006.187http://dx.doi.org/10.1109/CVPR.2006.187]
Ramanathan N and Chellappa R. 2008. Modeling shape and textural variations in aging faces//Proceedings of the 8th IEEE International Conference on Automatic Face and Gesture Recognition. Amsterdam, the Netherlands: IEEE: 1-8 [DOI: 10.1109/AFGR.2008.4813337http://dx.doi.org/10.1109/AFGR.2008.4813337]
Ramanathan N, Chellappa R and Biswas S. 2009. Age progression in human faces: a survey. Journal of Visual Languages and Computing, 15: 3349-3361
Ricanek K and Tesafaye T. 2006. MORPH: a longitudinal image database of normal adult age-progression//Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition. Southampton, UK: IEEE: 341-345 [DOI: 10.1109/FGR.2006.78http://dx.doi.org/10.1109/FGR.2006.78]
Rothe R, Timofte R and van Gool L. 2015. DEX: deep expectation of apparent age from a single image//Proceedings of 2015 IEEE International Conference on Computer Vision Workshop. Santiago, Chile: IEEE: 252-257 [DOI: 10.1109/ICCVW.2015.41http://dx.doi.org/10.1109/ICCVW.2015.41]
Rowland D A and Perrett D I. 1995. Manipulating facial appearance through shape and color. IEEE Computer Graphics and Applications, 15(5): 70-76 [DOI: 10.1109/38.403830http://dx.doi.org/10.1109/38.403830]
Shen Y J, Zhou B L, Luo P and Tang X O. 2018. FaceFeat-GAN: a two-stage approach for identity-preserving face synthesis [EB/OL]. [2022-07-10]. https://arxiv.org/pdf/1812.01288.pdfhttps://arxiv.org/pdf/1812.01288.pdf
Shi C L, Zhang J C, Yao Y Z, Sun Y L, Rao H M and Shu X B. 2020. CAN-GAN: conditioned-attention normalized GAN for face age synthesis. Pattern Recognition Letters, 138: 520-526 [DOI: 10.1016/j.patrec.2020.08.021http://dx.doi.org/10.1016/j.patrec.2020.08.021]
Shu X B, Tang J H, Lai H J, Liu L Q and Yan S C. 2015. Personalized age progression with aging dictionary//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE: 3970-3978 [DOI: 10.1109/ICCV.2015.452http://dx.doi.org/10.1109/ICCV.2015.452]
Shu X B, Xie G S, Li Z C and Tang J H. 2016. Age progression: current technologies and applications. Neurocomputing, 208: 249-261 [DOI: 10.1016/j.neucom.2016.01.101http://dx.doi.org/10.1016/j.neucom.2016.01.101]
Song H Z and Wu X J. 2019. High-quality image generation model for face aging/processing. Journal of Image and Graphics, 24(4): 592-602
宋昊泽, 吴小俊. 2019. 人脸老化/去龄化的高质量图像生成模型. 中国图象图形学报, 24(4): 592-602 [DOI: 10.11834/jig.180272http://dx.doi.org/10.11834/jig.180272]
Song J K, Zhang J Q, Gao L L, Liu X L and Shen H T. 2018. Dual conditional GANs for face aging and rejuvenation//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm, Sweden: AAAI Press: 899-905 [DOI: 10.24963/IJCAI.2018/125http://dx.doi.org/10.24963/IJCAI.2018/125]
Song J K, Zhang J Q, Gao L L, Zhao Z and Shen H T. 2022. AgeGAN++: face aging and rejuvenation with dual conditional GANs. IEEE Transactions on Multimedia, 24: 791-804 [DOI: 10.1109/TMM.2021.3059336http://dx.doi.org/10.1109/TMM.2021.3059336]
Suo J L, Chen X L, Shan S G, Gao W and Dai Q H. 2012. A concatenational graph evolution aging model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(11): 2083-2096 [DOI: 10.1109/TPAMI.2012.22http://dx.doi.org/10.1109/TPAMI.2012.22]
Suo J L, Zhu S C, Shan S G and Chen X L. 2010. A compositional and dynamic model for face aging. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(3): 385-401 [DOI: 10.1109/TPAMI.2009.39http://dx.doi.org/10.1109/TPAMI.2009.39]
Sutskever I and Hinton G E. 2007. Learning multilevel distributed representations for high-dimensional sequences//Proceedings of the 11th International Conference on Artificial Intelligence and Statistics. San Juan, USA: PMLR: 548-555
Szegedy C, Vanhoucke V, Ioffe S, Shlens J and Wojna Z. 2016. Rethinking the inception architecture for computer vision//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 2818-2826 [DOI: 10.1109/CVPR.2016.308http://dx.doi.org/10.1109/CVPR.2016.308]
Tang X, Wang Z W, Luo W X and Gao S H. 2018. Face aging with identity-preserved conditional generative adversarial networks//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 7939-7947 [DOI: 10.1109/CVPR.2018.00828http://dx.doi.org/10.1109/CVPR.2018.00828]
Tatikonda S, Nambiar A and Mittal A. 2022. Face age progression with attribute manipulation//Proceedings of the 3rd International Conference on Pattern Recognition and Artificial Intelligence. Paris, France: Springer: 639-652 [DOI: 10.1007/978-3-031-09037-0_52http://dx.doi.org/10.1007/978-3-031-09037-0_52]
Tazoe Y, Gohara H, Maejima A and Morishima S. 2012. Facial aging simulator considering geometry and patch-tiled texture//Proceedings of the ACM SIGGRAPH 2012 Posters. Los Angeles, USA: ACM: #90 [DOI: 10.1145/2342896.2343002http://dx.doi.org/10.1145/2342896.2343002]
Tiddeman B, Burt M and Perrett D. 2001. Prototyping and transforming facial textures for perception research. IEEE Computer Graphics and Applications, 21(4): 42-50 [DOI: 10.1109/38.946630http://dx.doi.org/10.1109/38.946630]
Todd J T, Mark L S, Shaw R E and Pittenger J B. 1980. The perception of human growth. Scientific American, 242(2): 132-145 [DOI: 10.1038/scientificamerican0280-132http://dx.doi.org/10.1038/scientificamerican0280-132]
Wang W, Cui Z, Yan Y, Feng J S, Yan S C, Shu X B and Sebe N. 2016a. Recurrent face aging//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 2378-2386 [DOI: 10.1109/CVPR.2016.261http://dx.doi.org/10.1109/CVPR.2016.261]
Wang W, Yan Y, Winkler S and Sebe N. 2016b. Category specific dictionary learning for attribute specific feature selection. IEEE Transactions on Image Processing, 25(3): 1465-1478 [DOI: 10.1109/TIP.2016.2523340http://dx.doi.org/10.1109/TIP.2016.2523340]
Wu T, Turaga P and Chellappa R. 2012. Age estimation and face verification across aging using landmarks. IEEE Transactions on Information Forensics and Security, 7(6): 1780-1788 [DOI: 10.1109/TIFS.2012.2213812http://dx.doi.org/10.1109/TIFS.2012.2213812]
Wu Y, Thalmann N M and Thalmann D. 1994. A plastic-visco-elastic model for wrinkles in facial animation and skin aging//Proceedings of the 2nd Pacific Conference on Fundamentals of Computer Graphics. Beijing, China: World Scientific: 201-213 [DOI: 10.1142/9789814503860_0013http://dx.doi.org/10.1142/9789814503860_0013]
Yang H Y, Huang D, Wang Y H and Jain A K. 2018. Learning face age progression: a pyramid architecture of GANs//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 31-39 [DOI: 10.1109/CVPR.2018.00011http://dx.doi.org/10.1109/CVPR.2018.00011]
Yi D, Lei Z and Li S Z. 2015. Age estimation by multi-scale convolutional network//Proceedings of the 12th Asian Conference on Computer Vision. Singapore, Singapore: Springer, 2015: 144-158 [DOI: 10.1007/978-3-319-16811-1_10http://dx.doi.org/10.1007/978-3-319-16811-1_10]
Zhang K, Wang X S, Guo Y R, Su Y K and He Y X. 2019. Survey of deep learning methods for face age estimation. Journal of Image and Graphics, 24(8): 1215-1230
张珂, 王新胜, 郭玉荣, 苏昱坤, 何颖宣. 2019. 人脸年龄估计的深度学习方法综述. 中国图象图形学报, 24(8): 1215-1230 [DOI: 10.11834/jig.180653http://dx.doi.org/10.11834/jig.180653]
Zhang Z F, Song Y and Qi H R. 2017. Age progression/regression by conditional adversarial autoencoder//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 4352-4360 [DOI: 10.1109/CVPR.2017.463http://dx.doi.org/10.1109/CVPR.2017.463]
Zhao X, Wang J B, Li Y, Wang Y P and Miao Z. 2021. Complemented attention method for fine-grained image classification. Journal of Image and Graphics, 26(12): 2860-2869
赵勋, 王家宝, 李阳, 王亚鹏, 苗壮. 2021. 细粒度图像分类的互补注意力方法. 中国图象图形学报, 26(12): 2860-2869 [DOI: 10.11834/jig.200426http://dx.doi.org/10.11834/jig.200426]
Zhu H P, Huang Z Z, Shan H M and Zhang J P. 2020. Look globally, age locally: face aging with an attention mechanism//Proceedings of 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Barcelona, Spain: IEEE: 1963-1967 [DOI: 10.1109/ICASSP40776.2020.9054553http://dx.doi.org/10.1109/ICASSP40776.2020.9054553]
Zhu J Y, Park T, Isola P and Efros A A. 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 2242-2251 [DOI: 10.1109/ICCV.2017.244http://dx.doi.org/10.1109/ICCV.2017.244]
相关作者
相关机构