稀疏约束的时空正则相关滤波无人机视觉跟踪
Sparse constraint and spatial-temporal regularized correlation filter for UAV tracking
- 2023年28卷第2期 页码:458-470
收稿:2021-08-12,
修回:2022-1-12,
录用:2022-1-19,
纸质出版:2023-02-16
DOI: 10.11834/jig.210611
移动端阅览

浏览全部资源
扫码关注微信
收稿:2021-08-12,
修回:2022-1-12,
录用:2022-1-19,
纸质出版:2023-02-16
移动端阅览
目的
2
基于相关滤波的跟踪算法在无人机(unmanned aerial vehicle,UAV)视觉跟踪领域表现出卓越的性能。现有的相关滤波类跟踪算法从样本区域的所有特征中学习滤波器,然而某些来自遮挡或形变的特征可能会污染滤波器,降低模型判别能力。针对此问题,提出一种稀疏约束的时空正则相关滤波跟踪算法。
方法
2
在相关滤波目标函数上施加空间弹性网络约束以自适应地抑制跟踪过程中的干扰特征,同时集成空间—时间正则相关滤波算法(spatial-temporal regularized correlation filter,STRCF)中的时间正则项以增强滤波器抑制畸变的能力。采用交替方向乘子法(alternating direction method of multipliers,ADMM)将带有约束项的目标函数转化为两个具有闭式解的子问题迭代求局部最优解。此外,提出一种相关滤波框架通用的加速策略,根据当前帧的目标位移量,对检测定位阶段的特征矩阵进行等距离的循环移位,将其作为在线学习阶段的特征矩阵,每帧可节省一次训练样本的特征提取操作,提高跟踪速度。
结果
2
在3个UAV数据集上与14种主流跟踪算法进行对比实验,在DTB70(drone tracking benchmark)数据集中,平均精确率与平均成功率分别为0.707和0.477,在所有对比算法中位列第1,相比较STRCF分别提高了5.8%和4%;在UAVDT(the unmanned aerial vehicle benchmark:object detection and tracking)数据集中,平均精确率与平均成功率相比较STRCF分别提高了8.4%和3.8%;在UAV123_10 fps数据集中,平均精确率与平均成功率相比较STRCF分别提高了4%和3.3%。同时,消融实验结果表明,加速策略在不显著影响跟踪精度(±0.1%)的前提下,可提高跟踪速度约25%,在单个CPU上的跟踪速度为50帧/s。
结论
2
本文算法结合了稀疏约束与时间—空间正则化的优势,与对比算法相比,在遮挡、形变等复杂情况下跟踪效果更加鲁棒。
Objective
2
Correlation filter (CF)-based methods have demonstrated their potential in visual object tracking for unmanned aerial vehicle (UAV) applications. Current discriminative CF trackers can be used to learn a multifaceted feature filter in the sample region. However
more occlusion or deformation-derived features may distort the filter and degrade the discriminative ability of the model. To mitigate this problem
we develop a novel sparse constraint and spatio-temporal regularized correlation filter to ignore those distractive features adaptively.
Method
2
By imposing a spatial (bowl-shaped) elastic net constraint on the objective function of the correlation filter
our algorithm can restrict the sparsity of the filter values corresponding to the target region instead of the whole sample region and adaptively suppress the distorted features during tracking. In addition
a temporal regularization term in spatial-temporal regularized correlation filter (STRCF) is integrated to enhance the filter's ability to suppress distortion. Our research treats the object tracking task as a convex optimization problem and provides an efficient global optimization method through alternating direction method of multipliers (ADMM). First
the objective function is required to meet Eckstein-Bertsek condition. Thus
it can converge to the global optimal solution by an unconstrained augmented Lagrange multiplier formulation. Next
ADMM is used to transform the Lagrange multiplier formulation into two sub-problems with closed-form solution. To improve computational efficiency
we convert the sub-problems into the Fourier domain according to Parseval's theorem. Our algorithm can converge quickly within a few iterations.
Result
2
Several evaluation metrics like center location error and bounding box overlap ratio are used to test and compare the proposed method against other existing methods. The center location error measures the accuracy of the tracking algorithm's estimation for the target location. It computes the average Euclidean distance between the ground truth and the center location of the tracked target in all frames. The center location error can represent the location accuracy of the tracking algorithm. But
the sensitivity of the different size targets to the center location error is different because scale and aspect ratio are not taken into consideration. Another commonly used evaluation metric is the overlap rate
which is defined as the intersection over union between the target box prediction and the ground truth. We compare our approach with several state-of-the-art algorithms on well-known benchmarks
such as DTB70 (drone tracking benchmark)
UAVDT (unmanned aerial vehicle benchmark: object detection and tracking) and UAV123_10 fps. The experiment results show that our model outperforms all other methods on DTB70 benchmark. The average accuracy rate and the average success rate are 0.707 and 0.477
which are 5.8% and 4% higher than STRCF. For UAVDT benchmark
the average accuracy rate and the average success rate are 0.72 and 0.494
respectively
which are 8.4% and 3.8% higher than STRCF. For UAV123_10 fps benchmark
the average accuracy rate and average success rate are 0.667 and 0.577
respectively
which are 5% and 3.3% higher than STRCF. Furthermore
an ablation experiment demonstrates that the proposed strategy improves the tracking speed by about 25% without affecting the tracking accuracy
and the running speed can reach 50 frame/s on a single CPU.
Conclusion
2
Compared with the current popular methods
the proposed sparse constraint and spatio-temporal regularized correlation filter achieves leading performance. Due to the introduction of sparse constraints and spatial-temporal regularization
our algorithm improves the tracking effect and has strong robustness in complex scenes such as occlusion and deformation.
Beck A and Teboulle M. 2009. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1): 183-202 [DOI: 10.1137/080716542]
Bertinetto L, Valmadre J, Golodetz S, Miksik O and Torr P H S. 2016. Staple: complementary learners for real-time tracking//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 1401-1409 [ DOI: 10.1109/CVPR.2016.156 http://dx.doi.org/10.1109/CVPR.2016.156 ]
Bolme D S, Beveridge J R, Draper B A and Lui Y M. 2010. Visual object tracking using adaptive correlation filters//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE: 2544-2550 [ DOI: 10.1109/CVPR.2010.5539960 http://dx.doi.org/10.1109/CVPR.2010.5539960 ]
Boyd S, Parikh N, Chu E, Peleato B and Eckstein J. 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends ® in Machine Learning, 3(1): 1-122 [DOI: 10.1561/2200000016]
Dai K N, Wang D, Lu H C, Sun C and Li J H. 2019. Visual tracking via adaptive spatially-regularized correlation filters//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 4665-4674 [ DOI: 10.1109/CVPR.2019.00480 http://dx.doi.org/10.1109/CVPR.2019.00480 ]
Dalal N and Triggs B. 2005. Histograms of oriented gradients for human detection//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE: 886-893 [ DOI: 10.1109/CVPR.2005.177 http://dx.doi.org/10.1109/CVPR.2005.177 ]
Danelljan M, Bhat G, Khan F S and Felsberg M. 2017b. ECO: efficient convolution operators for tracking//Proceedings of2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 6931-6939 [ DOI: 10.1109/CVPR.2017.733 http://dx.doi.org/10.1109/CVPR.2017.733 ]
Danelljan M, Häger G, Khan F S and Felsberg M. 2014a. Accurate scale estimation for robust visual tracking//Proceedings of 2014 British Machine Vision Conference. Nottingham, UK: BMVA Press: 1-65 [ DOI: 10.5244/C.28.65 http://dx.doi.org/10.5244/C.28.65 ]
Danelljan M, Häger G, Khan F S and Felsberg M. 2015. Learning spatially regularized correlation filters for visual tracking//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE: 4310-4318 [ DOI: 10.1109/ICCV.2015.490 http://dx.doi.org/10.1109/ICCV.2015.490 ]
Danelljan M, Häger G, Khan F S and Felsberg M. 2017a. Discriminative scale space tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(8): 1561-1575 [DOI: 10.1109/TPAMI.2016.2609928]
Danelljan M, Khan F S, Felsberg M and van de Weijer J. 2014b. Adaptive color attributes for real-time visual tracking//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE: 1090-1097 [ DOI: 10.1109/CVPR.2014.143 http://dx.doi.org/10.1109/CVPR.2014.143 ]
Du D W, Qi Y K, Yu H Y, Yang Y F, Duan K W, Li G R, Zhang W G, Huang Q M and Tian Q. 2018. The unmanned aerial vehicle benchmark: object detection and tracking//Proceedings of the 15th European Conference Computer Vision. Munich, Germany: Springer: 375-391 [ DOI: 10.1007/978-3-030-01249-6_23 http://dx.doi.org/10.1007/978-3-030-01249-6_23 ]
Fu C H, Li B W, Ding F Q, Lin F L and Lu G. 2022. Correlation filters for unmanned aerial vehicle-based aerial tracking: a review and experimental evaluation. IEEE Geoscience and Remote Sensing Magazine, 10(1): 125-160 [DOI: 10.1109/MGRS.2021.3072992]
Galoogahi H K, Fagg A and Lucey S. 2017. Learning background-aware correlation filters for visual tracking//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 1144-1152 [ DOI: 10.1109/ICCV.2017.129 http://dx.doi.org/10.1109/ICCV.2017.129 ]
Henriques J F, Caseiro R, Martins P and Batista J. 2015. High-speed tracking with Kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(3): 583-596 [DOI: 10.1109/TPAMI.2014.2345390]
Huang Z Y, Fu C H, Li Y M, Lin F L and Lu P. 2019. Learning aberrance repressed correlation filters for real-time UAV tracking//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South): 2891-2900 [ DOI: 10.1109/ICCV.2019.00298 http://dx.doi.org/10.1109/ICCV.2019.00298 ]
Li F, Tian C, Zuo W M, Zhang L and Yang M H. 2018. Learning spatial-temporal regularized correlation filters for visual tracking//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 4904-4913 [ DOI: 10.1109/CVPR.2018.00515 http://dx.doi.org/10.1109/CVPR.2018.00515 ]
Li S Y and Yeung D Y. 2017. Visual object tracking for unmanned aerial vehicles: a benchmark and new motion models//Proceedings of the 31st AAAI Conference on Artificial Intelligence. San Francisco, USA: AAAI Press: 4140-4146
Li Y and Zhu J K. 2014. A scale adaptive kernel correlation filter tracker with feature integration//Proceedings of 2014 Computer Vision. Zurich, Switzerland: Springer: 254-265 [ DOI: 10.1007/978-3-319-16181-5_18 http://dx.doi.org/10.1007/978-3-319-16181-5_18 ]
Ma C, Yang X K, Zhang C Y and Yang M H. 2015a. Long-term correlation tracking//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE: 5388-5396 [ DOI: 10.1109/CVPR.2015.7299177 http://dx.doi.org/10.1109/CVPR.2015.7299177 ]
Mueller M, Smith N and Ghanem B. 2016. A benchmark and simulator for UAV tracking//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, the Netherlands: Springer: 445-461 [ DOI: 10.1007/978-3-319-46448-0_27 http://dx.doi.org/10.1007/978-3-319-46448-0_27 ]
Peng Z and Lu X J. 2021. Learning region sparse constraint correlation filter for tracking. Signal Processing: Image Communication, 90: #116042 [DOI: 10.1016/j.image.2020.116042]
Sherman J and Morrison W J. 1950. Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. The Annals of Mathematical Statistics, 21(1): 124-127 [DOI: 10.1214/aoms/1177729893]
Sui Y, Wang G H and Zhang L. 2018. Correlation filter learning toward peak strength for visual tracking. IEEE Transactions on Cybernetics, 48(4): 1290-1303 [DOI: 10.1109/TCYB.2017.2690860]
Wang N, Zhou W G, Tian Q, Hong R C, Wang M and Li H Q. 2018. Multi-cue correlation filters for robust visual tracking//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 4844-4853 [ DOI: 10.1109/CVPR.2018.00509 http://dx.doi.org/10.1109/CVPR.2018.00509 ]
Wang Y. 2019. Vision-Based UAV Target Recognition and Tracking. Harbin: Harbin Institute of Technology
王瑶. 2019. 基于视觉的无人机目标识别及跟踪. 哈尔滨: 哈尔滨工业大学
Wu Y, Lim J and Yang M H. 2015. Object tracking benchmark. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(9): 1834-1848 [DOI: 10.1109/TPAMI.2014.2388226]
Yan B, Wang D, Lu H C and Yang X Y. 2020. Cooling-shrinking attack: blinding the tracker with imperceptible noises//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 987-996 [ DOI: 10.1109/CVPR42600.2020.00107 http://dx.doi.org/10.1109/CVPR42600.2020.00107 ]
Ye J J, Fu C H, Lin F L, Ding F Q, An S and Lu G. 2022. Multi-regularized correlation filter for UAV tracking and self-localization. IEEE Transactions on Industrial Electronics, 69(6): 6004-6014 [DOI: 10.1109/TIE.2021.3088366]
Zheng G Z, Fu C H, Ye J J, Lin F L and Ding F Q. 2021. Mutation sensitive correlation filter for real-time UAV tracking with adaptive hybrid label//Proceedings of 2021 IEEE International Conference on Robotics and Automation. Xi′an, China: IEEE: 503-509 [ DOI: 10.1109/ICRA48506.2021.9561931 http://dx.doi.org/10.1109/ICRA48506.2021.9561931 ]
Zou H and Hastie T. 2005. Addendum: regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B (Statistical Methodology), 67(5): #768 [DOI: 10.1111/j.1467-9868.2005.00527.x]
相关作者
相关机构
京公网安备11010802024621