膜性肾病诊断的高光谱图像张量嵌入分析
Tensor-based graph embedding for discriminant analysis of membranous nephropathy hyperspectral data
- 2021年26卷第8期 页码:1823-1835
收稿:2021-03-13,
修回:2021-5-3,
录用:2021-5-10,
纸质出版:2021-08-16
DOI: 10.11834/jig.210190
移动端阅览

浏览全部资源
扫码关注微信
收稿:2021-03-13,
修回:2021-5-3,
录用:2021-5-10,
纸质出版:2021-08-16
移动端阅览
目的
2
高光谱成像技术因其能够获取目标的详细空间和光谱信息,在医学领域引起了广泛关注。然而,对于识别任务来说,高光谱图像的高维特征通常会导致分类器性能不佳。因此,降维在高光谱图像分析过程中至关重要。为了在低维空间中保留医学高光谱图像的多流形结构信息并增强特征判别能力,本文提出了一种基于张量表示的拉普拉斯稀疏低秩图嵌入方法(tensor-based Laplacian regularized sparse and low-rank graph,T-LapSLRG),用于医学高光谱图像的判别分析。
方法
2
在T-LapSLRG中,基于有标签的张量样本,通过引入稀疏、低秩约束及流形正则项以构造监督张量图。张量表示用于捕获空间结构信息,稀疏和低秩约束用于保留局部和全局结构信息,流形正则项用于利用固有的几何信息并增强特征判别能力。通过引入张量图嵌入技术获取数据的低维特征并输入分类器以实现数据的分类及识别。
结果
2
实验数据采用膜性肾病数据集,通过降维方法获取数据的低维特征,使用支持向量机(support vector machine,SVM)分类器对获取的低维特征进行分类。将T-LapSLRG获得的实验结果与相关的降维方法获得的实验结果进行性能比较,以证明T-LapSLRG算法的有效性。采用4个性能指标,即各个类别的准确性、总体准确性(overall accuracy,OA)、平均准确性(average accuracy,AA)和Kappa系数衡量分类性能。T-LapSLRG在膜性肾病数据集下的OA为97.14%,AA为97.05%,Kappa为0.942,各项性能指标均优于对比方法。其中,OA高出1.40%~34.75%,AA高出1.46%~36.89%,Kappa高出0.031~0.73。此外,通过T-LapSLRG算法获得的各个患者的分类准确率均达到90%以上。
结论
2
T-LapSLRG算法在膜性肾病诊断中具有潜在临床价值。
Objective
2
Hyperspectral imaging systems have become promising auxiliary diagnostic tools for intelligent medicine in recent years
especially in disease diagnosis and image-guided surgery. Hyperspectral image (HSI) has hundreds of contiguous narrow spectral bands from visible to infrared electromagnetic spectrum. These bands provide a wealth of information to distinguish different chemical composition of biological tissue. The reflected
fluorescent
and transmitted light from tissue captured by HSI carry quantitative diagnostic information about tissue pathology. Wealthy spectral bands also contain redundancy
which not only degrades classification performance but also increases computational complexity. Thus
dimensionality reduction (DR) needs to be conducted to reveal the essence of data by discarding redundant information. However
most of the current DR methods are based on spectral vector input (first-order representation) that ignores important correlations in the spatial domain. Although some spectral-spatial joint technologies have been investigated to overcome this disadvantage
they still consider the spectral-spatial feature into first-order data for analysis and ignore the cubic nature of hyperspectral data. Thus
a novel tensor-based Laplacian regularized sparse and low-rank graph (T-LapSLRG) for discriminant analysis is proposed to preserve the original intrinsic structure information of medical hyperspectral data and enhance the discriminant ability of features.
Method
2
Sparse and low-rank constraints are suggested in the proposed T-LapSLRG to exploit local and global data structures while tensor analysis is developed to preserve the spatial neighborhood information. Multi-manifold is utilized to enhance the discriminant ability and describe the intrinsic geometric information. Consequently
the proposed method not only can preserve local and global structure information but also can utilize the intrinsic geometric information. Thus
it offers more discriminative power than existing tensor-based DR methods. Vector-based methods treat each pixel as an independent and identically distributed item. By contrast
the samples in T-LapSLRG are represented in the form of a third-order tensor that can preserve the original spatial neighborhood information. In addition
only a small set of the labeled training samples is needed by adopting tensor training samples. With the assumption that the samples belonging to the same class lie on a unique sub-manifold
T-LapSLRG constructs tensor-based within-class graph to characterize the within-class compactness for making the resulting graph more discriminative. In summary
T-LapSLRG jointly utilizes spatial neighborhoods and discriminative and intrinsic structure information that capture the local and global structures and the discriminative information simultaneously and make the resulting graph more robust and discriminative.
Result
2
To evaluate the effectiveness of the proposed T-LapSLRG
the medical hyperspectral data of membranous nephropathy (MN) is used. The traditional diagnosis methods of MN mainly rely on serological characteristics and renal pathological characteristics
which is tough to reach the intelligent and automated requirements of clinical diagnosis. Two types of MN are used as the experimental verification data
including primary membranous nephropathy (PMN) and hepatitis B virus-related membranous nephropathy (HBV-MN). The microscopic hyperspectral images of PMN and HBV-MN are captured by the line scan hyperspectral imaging system SOC-710 together with the biological microscope CX31RTSF. The SOC-710 system captures 128 spectral bands with 696×520 pixels and a spectral wavelength range from 400 to 1 000 nm. The obtained medical HSI dataset consists of 30 HBV-MN images and 24 PMN images
involving 10 HBV-MN patients and 9 PMN patients. Classification is performed on the obtained low-dimensional features by the classical support vector machine classifier to evaluate the performance of the proposed T-LapSLRG. Four objective quality indices (i.e.
individual class accuracy
overall accuracy (OA)
average accuracy (AA)
and kappa coefficient (Kappa)) are used. The proposed T-LapSLRG outperforms other methods by 1.40% to 34.75% in OA
1.46% to 36.89% in AA
and 0.031 to 0.73 in Kappa. In addition
the classification accuracy obtained by T-LapSLRG for all patients has reached more than 90%. In clinical diagnosis
the type of disease can be determined when the pixel level accuracy reaches 85% or more.
Conclusion
2
In this study
we proposed a novel tensor-based Laplacian regularized sparse and low-rank graph for discriminant analysis. Experiments on the MN dataset demonstrate that the proposed T-LapSLRG is effective in discriminant analysis with sparse and low-rank constraints and multi-manifold
and significantly improves the classification performance. Experimental results verify the nonnegligible potential of T-LapSLRG for further application in MN identification.
Akbari H, Kosugi Y, Kojima K and Tanaka N. 2010. Detection and analysis of the intestinal ischemia using visible and invisible hyperspectral imaging. IEEE Transactions on Biomedical Engineering, 57(8): 2011-2017[DOI: 10.1109/TBME.2010.2049110]
An J L, Zhang X R and Jiao L C. 2016. Dimensionality reduction based on group-based tensor model for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 13(10): 1497-1501[DOI: 10.1109/LGRS.2016.2593789]
Bourennane S, Fossati C and Cailly A. 2010. Improvement of classification for hyperspectral images based on tensor modeling. IEEE Geoscience and Remote Sensing Letters, 7(4): 801-805[DOI: 10.1109/LGRS.2010.2048696]
Cai D, He X F, Han J W and Huang T S. 2011. Graph regularized nonnegative matrix factorization for data representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(8): 1548-1560[DOI: 10.1109/TPAMI.2010.231]
Cai J, Candés E J and Shen Z. A singular value thresholding algorithm for matrix completion. 2010. SIAM Journal on Optimization, 24: 1956-1982[DOI: 10.1137/080738970]
Carrión-Camacho M R, Marín-León I, Molina-Doñoro J M and González-López J R. 2019. Safety of permanent pacemaker implantation: a prospective study. Journal of Clinical Medicine, 8(1): #35[DOI: 10.3390/jcm8010035]
Chen C F, Wei C P and Wang Y C F. 2012. Low-rank matrix recovery with structural incoherence for robust face recognition//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA: IEEE: 2618-2625[ DOI:10.1109/CVPR.2012.6247981 http://dx.doi.org/10.1109/CVPR.2012.6247981 ]
Cheng B, Yang J C, Yan S C, Fu Y and Huang T S. 2010. Learning with ℓ 1 -graph for image analysis. IEEE Transactions on Image Processing, 19(4): 858-866[DOI: 10.1109/TIP.2009.2038764].
Dalla Mura M, Villa A, Benediktsson J A, Chanussot J and Bruzzone L. 2011. Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis. IEEE Geoscience and Remote Sensing Letters, 8(3): 542-546[DOI: 10.1109/LGRS.2010.2091253]
Deng Y J, Li H C, Pan L and Emery W J. 2017. Tensor locality preserving projection for hyperspectral image classification//2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Fort Worth, USA: IEEE: 771-774[ DOI:10.1109/IGARSS.2017.8127066 http://dx.doi.org/10.1109/IGARSS.2017.8127066 ]
Deng Y J, Li H C, Pan L, Shao L Y, Du Q and Emery W J. 2018. Modified tensor locality preserving projection for dimensionality reduction of hyperspectral images. IEEE Geoscience and Remote Sensing Letters, 15(2): 277-281[DOI: 10.1109/LGRS.2017.2786223]
Dong H R, Wang Y Y, Cheng X H, Wang G Q, Sun L J, Cheng H and Chen Y P. 2016. Retrospective study of phospholipase A2 receptor and IgG subclasses in glomerular deposits in Chinese patients with membranous nephropathy. PLoS One, 11(5): #e0156263[DOI: 10.1371/journal.pone.0156263]
Fang L Y, Wang C, Li S T and Benediktsson J A. 2017. Hyperspectral image classification via multiple-feature-based adaptive sparse representation. IEEE Transactions on Instrumentation and Measurement, 66(7): 1646-1657[DOI: 10.1109/TIM.2017.2664480]
Gao Q X, Liu J J, Zhang H J, Hou J and Yang X J. 2012. Enhanced fisher discriminant criterion for image recognition. Pattern Recognition, 45(10): 3717-3724[DOI: 10.1016/j.patcog.2012.03.024]
He X F, Cai D, Yan S C and Zhang H J. 2005. Neighborhood preserving embedding//Proceedings of the 10th IEEE International Conference on Computer Vision (ICCV'05). Beijing, China: IEEE: 1208-1213[DOI: 10.1109/ICCV.2005.167]
He X F and Niyogi P. 2004. Locality preserving projections. Advances in Neural Information Processing Systems, 16: 153-160
Jolliffe I T and Cadima J. 2016. Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065): #20150202[DOI: 10.1098/rsta.2015.0202]
Kuo B C and Landgrebe D A. 2004. Nonparametric weighted feature extraction for classification. IEEE Transactions on Geoscience and Remote Sensing, 42(5): 1096-1105[DOI: 10.1109/TGRS.2004.825578]
Li W, Liu J B and Du Q. 2016. Sparse and low-rank graph for discriminant analysis of hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 54(7): 4094-4105[DOI: 10.1109/TGRS.2016.2536685]
Li W, Prasad S, Fowler J E and Bruce L M. 2011. Locality-preserving discriminant analysis in kernel-induced feature spaces for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 8(5): 894-898[DOI: 10.1109/LGRS.2011.2128854]
Li W, Prasad S, Fowler J E and Bruce L M. 2012. Locality-preserving dimensionality reduction and classification for hyperspectral image analysis. IEEE Transactions on Geoscience and Remote Sensing, 50(4): 1185-1198[DOI: 10.1109/TGRS.2011.2165957]
Liu J M, Chen Y J, Zhang J S and Xu Z B. 2014. Enhancing low-rank subspace clustering by manifold regularization. IEEE Transactions on Image Processing, 23(9): 4022-4030[DOI: 10.1109/TIP.2014.2343458]
Lu C and Mandal M. 2014. Toward automatic mitotic cell detection and segmentation in multispectral histopathological images. IEEE Journal of Biomedical and Health Informatics, 18(2): 594-605[DOI: 10.1109/JBHI.2013.2277837]
Lu G L and Fei B W. 2014. Medical hyperspectral imaging: a review. Journal of Biomedical Optics, 19(1): #010901[DOI: 10.1117/1.JBO.19.1.010901]
Lyu M, Hou Q L, Deng N Y and Jing L. 2017. Collaborative discriminative manifold embedding for hyperspectral imagery. IEEE Geoscience and Remote Sensing Letters, 14(4): 569-573[DOI: 10.1109/LGRS.2017.2660518]
Ly N H, Du Q and Fowler J E. 2014. Collaborative graph-based discriminant analysis for hyperspectral imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(6): 2688-2696[DOI: 10.1109/JSTARS.2014.2315786]
Moughal T A. 2013. Hyperspectral image classification using support vector machine. Journal of Physics: Conference Series, 439: #012042[DOI: 10.1088/1742-6596/439/1/012042]
Pan L, Li H C, Deng Y J, Zhang F, Chen X D and Du Q. 2017a. Hyperspectral dimensionality reduction by tensor sparse and low-rank graph-based discriminant analysis. Remote Sensing, 9(5): #452[DOI: 10.3390/rs9050452]
Pan L, Li H C, Li W, Chen X D, Wu G N and Du Q. 2017b. Discriminant analysis of hyperspectral imagery using fast kernel sparse and low-rank graph. IEEE Transactions on Geoscience and Remote Sensing, 55(11): 6085-6098[DOI: 10.1109/TGRS.2017.2720584]
Ronco P and Debiec H. 2015. Pathophysiological advances in membranous nephropathy: time for a shift in patient's care. The Lancet, 385(9981): 1983-1992[DOI: 10.1016/S0140-6736(15)60731-0]
Schweitzer A, Horn J, Mikolajczyk R T, Krause G and Ott J J. 2015. Estimations of worldwide prevalence of chronic hepatitis B virus infection: a systematic review of data published between 1965 and 2013. The Lancet, 386(10003): 1546-1555[DOI: 10.1016/S0140-6736(15)61412-X]
Sumarsono A and Du Q. 2015. Low-rank subspace representation for estimating the number of signal subspaces in hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 53(11): 6286-6292[DOI: 10.1109/TGRS.2015.2438079]
Tarabalka Y, Benediktsson J A, Chanussot J and Tilton J C. 2010. Multiple spectral-spatial classification approach for hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 48(11): 4122-4132[DOI: 10.1109/TGRS.2010.2062526]
van den Brand J A J G, Hofstra J M and Wetzels J F M. 2011. Low-molecular-weight proteins as prognostic markers in idiopathic membranous nephropathy. Clinical Journal of the American Society of Nephrology, 6(12): 2846-2853[DOI: 10.2215/CJN.04020411]
Villa A, Benediktsson J A, Chanussot J and Jutten C. 2011. Hyperspectral image classification with independent component discriminant analysis. IEEE Transactions on Geoscience and Remote Sensing, 49(12): 4865-4876[DOI: 10.1109/TGRS.2011.2153861]
Wei X L, Li W, Zhang M M and Li Q L. 2019. Medical hyperspectral image classification based on end-to-end fusion deep neural network. IEEE Transactions on Instrumentation and Measurement, 68(11): 4481-4492[DOI: 10.1109/TIM.2018.2887069]
Wright J, Ma Y, Mairal J, Sapiro G, Huang T S and Yan S C. 2010. Sparse representation for computer vision and pattern recognition. Proceedings of the IEEE, 98(6): 1031-1044[DOI: 10.1109/JPROC.2010.2044470]
Wright J, Yang A Y, Ganesh A, Sastry S S and Ma Y. 2009. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2): 210-227[DOI: 10.1109/TPAMI.2008.79]
Xu J S, He L and Zhang S L. 2018. Major research advances in chronic kidney disease of 2017. Clinical Focus, 33(1): 32-39
徐金升, 何雷, 张胜雷. 2018. 2017年慢性肾脏病重要研究进展. 临床荟萃, 33(1): 32-39[DOI: 10.3969/j.issn.1004-583X.2018.01.005]
Yan S C, Xu D, Zhang B Y, Zhang H J, Yang Q and Lin S. 2007. Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(1): 40-51[DOI: 10.1109/TPAMI.2007.250598]
Yang J and Yang J Y. 2003. Why can LDA be performed in PCA transformed space? Pattern Recognition, 36(2): 563-566[DOI: 10.1016/S0031-3203(02)00048-1]
Zhang L, Yang M and Feng X C. 2011a. Sparse representation or collaborative representation: which helps face recognition?//Proceedings of 2011 IEEE International Conference on Computer Vision (ICCV). Barcelona, Spain: IEEE: 471-478[ DOI:10.1109/iccv.2011.6126277 http://dx.doi.org/10.1109/iccv.2011.6126277 ]
Zhang L P, Huang X, Huang B and Li P X. 2006. A pixel shape index coupled with spectral information for classification of high spatial resolution remotely sensed imagery. IEEE Transactions on Geoscience and Remote Sensing, 44(10): 2950-2961[DOI: 10.1109/TGRS.2006.876704]
Zhang L P, Zhang L F, Tao D C and Huang X. 2013. Tensor discriminative locality alignment for hyperspectral image spectral-spatial feature extraction. IEEE Transactions on Geoscience and Remote Sensing, 51(1): 242-256[DOI: 10.1109/TGRS.2012.2197860]
Zhang Q, Plemmons R, Kittle D, Brady D and Prasad S. 2011b. Joint segmentation and reconstruction of hyperspectral data with compressed measurements. Applied Optics, 50(22): 4417-4435[DOI: 10.1364/AO.50.004417]
Zhang Y Q, Cao G and Li X S. 2021. Multiview-based random rotation ensemble pruning for hyperspectral image classification. IEEE Transactions on Instrumentation and Measurement, 70: #5500314[DOI: 10.1109/TIM.2020.3011777]
相关文章
相关作者
相关机构
京公网安备11010802024621