面向体验质量的多媒体计算通信
Quality of experience oriented multimedia computing communications
- 2021年26卷第6期 页码:1201-1215
收稿:2020-12-31,
修回:2021-2-18,
录用:2021-2-25,
纸质出版:2021-06-16
DOI: 10.11834/jig.200864
移动端阅览

浏览全部资源
扫码关注微信
收稿:2020-12-31,
修回:2021-2-18,
录用:2021-2-25,
纸质出版:2021-06-16
移动端阅览
随着移动互联网和通讯技术的发展,多媒体通信技术成为国家信息产业发展的重大需求,广泛地应用在视频会议、各类直播应用、远程医疗、远程监控和远程教育等方面。然而,大容量多媒体通信业务面临着网络带宽的压力。本文将媒体计算引入通信系统,建立新的多媒体通信研究范式,从提升体验质量(quality of experience,QoE)的角度,形成新的多媒体编码与传输方法,从根本上降低网络带宽需求的压力。体验质量即信息接收者结合自身期望对客观信息载体的有关性能给出的主观评价,是区别于服务质量(quality of service,QoS)的通信质量评价准则。本文介绍了QoE的评价准则,分为基于用户的评价方法和基于客观参数的评价方法,通过用户主观评分或对用户的相关生理、心理指标进行测量进而分析、推测用户的感受;或者通过对业务客观指标的主观化修正实现体验质量的评价。本文综述了多媒体编码方法,主要包括基于波形的编码和基于内容的编码方法。前者对任意视频信号进行有效编码而不需要分析视频内容,如一系列视频编码标准;后者识别视频序列中的物体和相关区域并对它们进行编码。本文阐述了5G+AI(artificial intelligence)时代的新型视频传输方法,如多视点视频编码、4 K、8 K视频编码,3D立体视频,点云、光场、AR(augmented reality)、VR(virtual reality)等视频业务。
With the development of mobile Internet and communication technology
multimedia communication technology has become a major demand for the development of the national information industry
which is widely used in video conferencing
various live broadcast applications
telemedicine
remote monitoring
and remote education. However
large-capacity multimedia communication services face pressure on network bandwidth. Media computing is introduced into the communication system
a new multimedia communication research paradigm is established
and a new multimedia coding and transmission method is developed from the perspective of improving the quality of experience (QoE)
which fundamentally reduces the pressure on network bandwidth requirements. The quality of experience refers to the subjective evaluation of the relevant performance of the objective information carrier by the information receiver in combination with its own expectations. It is a communication quality evaluation criterion that is different from the quality of service (QoS). This article initially introduces the evaluation criteria of QoE
which are divided into user-based evaluation methods and objective parameter-based methods. The user's subjective score or the measurement of the user's relevant physiological and psychological indicators is used to analyze and infer the user's feelings. The subjective correction of business objective indicators realizes the evaluation of experience quality. Then
multimedia coding methods
including waveform-based coding and content-based coding methods are reviewed. The former effectively encodes any video signal without analyzing the video content
such as a series of video coding standards; the latter identifies objects and related areas in the video sequence and encodes them. Subsequently
this article describes new video transmission methods in the 5G+AI(artificial intelligence) era
such as multiview video coding
4 K
8 K video coding
3D stereo video
point cloud
light field
AR(augmented reality)
VR(virtual reality)
and other video services. Video services and communication channels are the source and channel parts of the video communication system
respectively
and the relationship between them can usually be compared with the relationship between water sources and water pipes. The continuous development and changes in communication technology
especially the international competition of 5G technology and products
have attracted widespread attention. Channels continuously increase; hence
the transmission rates become fast. Communication becomes ubiquitous. Thus
the rolling development between the source and the channel becomes increasingly influential. Academia and industry mostly solve the high-definition and low-latency challenges faced by video communication systems from two aspects
as follows: video characterization and coding and video transmission. Video coding aims to find effective data compression techniques to reduce the bit rate of video sequences for real-time transmission on a given communication channel. Image compression coding uses the statistical characteristics of the image itself
as well as the user's visual physiology and psychology characteristics
to extract the effective information in the image and remove useless or less useful redundant information. Channel bandwidth varies with different applications and transmission media. Different types of video coding algorithms have been developed; they include effective coding of arbitrary video signals without the need to analyze video content and identify objects and related areas in the video sequence to encode them. The former approach is referred to as a waveform-based encoder
and the latter is a content-based video encoder. With the help of artificial intelligence and machine learning technology
the innovative exploration of information representation from "bit→structure" can effectively overcome the influence of noise and interference in the propagation environment and improve the reliability and efficiency of wireless communication. The amount of data transmitted is greatly reduced by introducing a priori knowledge. The audiovisual service breaks the traditional user-server (content server or content delivery network(CDN) server) video streaming push mode and adds edge computing nodes to satisfy the computing requirements of secondary encoding
virtual scene generation
and scene rendering
generated during the interaction. In the future
the media inevitably aims at "a thousand people with a thousand faces" and develops in the direction of large data volume
large calculation volume
and large communication volume. The business architecture has the characteristics of "cloud-side-end" collaborative computing
which derives richer media applications in the future. The quality of communication system is evaluated from the perspective of QoE. QoE reflects the subjective evaluation of the objective information carrier (voice
image
and video) after the information receiver perceives the objective information carrier's performance. The current QoE evaluation methods are mainly divided into two categories
namely
user-based evaluation methods and evaluation methods based on objective parameters. User-based evaluation methods include all evaluation methods that require user participation. Specific indicators or information about the QoE need to be obtained directly from users. The evaluation methods based on objective parameters realize the evaluation of experience quality through the subjective correction of objective indicators.
Balachandran A, Sekar V, Akella A, Seshan S, Stoica I and Zhang H. 2013. Developing a predictive model of quality of experience for internet video. ACM SIGCOMM Computer Communication Review, 43(4): 339-350[DOI: 10.1145/2534169.2486025]
Chen L L, Cui G F, Liu C L, Li Z, Kou Z Y, Xu Y and Xu C L. 2020. Talking-head generation with rhythmic head motion//Proceedings of the 16th European Conference on Computer Vision. Glasgow, Scotland: Springer: 35-51[ DOI: 10.1007/978-3-030-58545-7_3 http://dx.doi.org/10.1007/978-3-030-58545-7_3 ]
Chen M J, Cormack L K and Bovik A C. 2013. No-reference quality assessment of natural stereopairs. IEEE Transactions on Image Processing, 22(9): 3379-3391[DOI: 10.1109/TIP.2013.2267393]
Chen Z B, Xu J F, He Y and Zheng J L. 2006. Fast integer-pel and fractional-pel motion estimation for H. 264/AVC. Journal of visual communication and image representation, 17(2): 264-290[DOI: 10.1016/j.jvcir.2004.12.002]
Chiang T and Zhang Y Q. 1997. A new rate control scheme using quadratic rate distortion model. IEEE Transactions on Circuits and Systems for Video Technology, 7(1): 246-250[DOI: 10.1109/76.554439]
Cho S and Kim M. 2013. Fast CU splitting and pruning for suboptimal CU partitioning in HEVC intra coding. IEEE Transactions on Circuits and Systems for Video Technology, 23(9): 1555-1564[DOI: 10.1109/TCSVT.2013.2249017]
Choi H, Yoo J, Nam J, Sim D and Bajić I V. 2013. Pixel-wise unified rate-quantization model for multi-level rate control. IEEE Journal of Selected Topics in Signal Processing, 7(6): 1112-1123[DOI: 10.1109/JSTSP.2013.2272241]
Choi K and Jang E S. 2012. Early TU decision method for fast video encoding in high efficiency video coding. Electronics Letters, 48(12): 689-691[DOI: 10.1049/el.2012.0277]
Correa G, Assuncao P A, Agostini L V and Da Silva Cruz L A. 2015. Fast HEVC encoding decisions using data mining. IEEE Transactions on Circuits and Systems for Video Technology, 25(4): 660-673[DOI: 10.1109/TCSVT.2014.2363753]
Domański M, Stankiewicz O, Wegner K and Grajek T. 2017. Immersive visual media-MPEG-I: 360 video, virtual navigation and beyond//Proceedings of 2017 International Conference on Systems, Signals, and Image Processing. Poznan, Poland: IEEE: 1-9[ DOI: 10.1109/IWSSIP.2017.7965623 http://dx.doi.org/10.1109/IWSSIP.2017.7965623 ]
Dutta P, Seetharam A, Arya V, Chetlur M, Kalyanaraman S and Kurose J. 2012. On managing quality of experience of multiple video streams in wireless networks//Proceedings of 2012 IEEE INFOCOM. Orlando, USA: IEEE: 1242-1250[ DOI: 10.1109/INFCOM.2012.6195485 http://dx.doi.org/10.1109/INFCOM.2012.6195485 ]
Feng Y, Liu Z M and Li B C. 2012. GestureFlow: QoE-aware streaming of multi-touch gestures in interactive multimedia applications. IEEE Journal on Selected Areas in Communications, 30(7): 1281-1294[DOI: 10.1109/JSAC.2012.120813]
Fu T, Zhang H, Mu F and Chen H B. 2019. Fast CU partitioning algorithm for H.266/VVC intra-frame coding//Proceedings of 2019 IEEE International Conference on Multimedia and Expo. Shanghai, China: IEEE: 55-60[ DOI: 10.1109/ICME.2019.00018 http://dx.doi.org/10.1109/ICME.2019.00018 ]
Galpin F, RacapéF, Jaiswal S, Bordes P, Le Léannec F and François E. 2019. CNN-based driving of block partitioning for intra slices encoding//Proceedings of 2019 Data Compression Conference. Snowbird, USA: IEEE: 162-171[ DOI: 10.1109/DCC.2019.00024 http://dx.doi.org/10.1109/DCC.2019.00024 ]
Ge N, Chen X and Feng W. 2020. New network architecture for intelligent mobile communications. Bulletin of National Natural Science Foundation of China, 34(2): 150-153
葛宁, 陈旭, 冯伟. 2020. 智能移动通信新架构探索. 中国科学基金, 34(2): 150-153[DOI: 10.16262/j.cnki.1000-8217.2020.02.005]
Ge X H, Pan L H, Li Q, Mao G Q and Tu S. 2017. Multipath cooperative communications networks for augmented and virtual reality transmission. IEEE Transactions on Multimedia, 19(10): 2345-2358[DOI: 10.1109/TMM.2017.2733461]
Hassan J A, Hassan M, Das S K and Ramer A. 2012. Managing quality of experience for wireless VOIP using noncooperative games. IEEE Journal on Selected Areas in Communications, 30(7): 1193-1204[DOI: 10.1109/JSAC.2012.120805]
He Z H, Kim Y K and Mitra S K. 2001. Low-delay rate control for DCT video coding via ρ -domain source modeling. IEEE Transactions on Circuits and Systems for Video Technology, 11(8): 928-940[DOI: 10.1109/76.937431]
Hsu R L, Abdel-Mottaleb M and Jain A K. 2002. Face detection in color images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5): 696-706[DOI: 10.1109/34.1000242]
Huang Y W, Hsieh B Y, Chien S Y, Ma S Y and Chen L G. 2006. Analysis and complexity reduction of multiple reference frames motion estimation in H. 264/AVC. IEEE Transactions on Circuits and Systems for Video Technology, 16(4): 507-522[DOI: 10.1109/TCSVT.2006.872783]
Jiang G Y, Fan L Z, Yu M and Chen K. 2009. Arbitrary viewpoint rendering based on ray-space interpolation. Acta Electronica Sinica, 37(8): 1799-1803
蒋刚毅, 范良忠, 郁梅, 陈恳. 2009. 基于光线空间插值的任意视点绘制. 电子学报, 37(8): 1799-1803[DOI: 10.3321/j.issn:0372-2112.2009.08.031]
Kannangara C S, Richardson I E G, Bystrom M, Solera J R, Zhao Y F, MacLennan A and Cooney R. 2006. Low-complexity skip prediction for H. 264 through Lagrangian cost estimation. IEEE Transactions on Circuits and Systems for Video Technology, 16(2): 202-208[DOI: 10.1109/TCSVT.2005.859026]
Kim N, Jeon S, Shim H J, Jeon B, Lim S C and Ko H. 2016. Adaptive keypoint-based CU depth decision for HEVC intra coding//Proceedings of 2016 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting. Nara, Japan: IEEE: 1-3[ DOI: 10.1109/BMSB.2016.7521923 http://dx.doi.org/10.1109/BMSB.2016.7521923 ]
Kua J, Armitage G and Branch P. 2017. A survey of rate adaptation techniques for dynamic adaptive streaming over HTTP. IEEE Communications Surveys and Tutorials, 19(3): 1842-1866[DOI: 10.1109/COMST.2017.2685630]
Lee J S and Ebrahimi T. 2012. Perceptual video compression: a survey. IEEE Journal of Selected Topics in Signal Processing, 6(6): 684-697[DOI: 10.1109/JSTSP.2012.2215006]
Lee S and Bovik A C. 2003. Fast algorithms for foveated video processing. IEEE Transactions on Circuits and Systems for Video Technology, 13(2): 149-162[DOI: 10.1109/TCSVT.2002.808441]
Lei S M, Chen T C and Sun M T. 1994. Video bridging based on H. 261 standard. IEEE Transactions on Circuits and Systems for Video Technology, 4(4): 425-437[DOI: 10.1109/76.313137]
Leng J, Sun L, Ikenaga T and Sakaida S. 2011. Content based hierarchical fast coding unit decision algorithm for HEVC//Proceedings of 2011 International Conference on Multimedia and Signal Processing. Guilin, China: IEEE: 56-59[ DOI: 10.1109/CMSP.2011.167 http://dx.doi.org/10.1109/CMSP.2011.167 ]
Li B, Li H and Li L. 2013. Adaptive bit allocation for R-λ model rate control in HM//Proceedings of the 13th Meeting of Joint Collaborative Team on Video Coding of ITU-T SG1 6 WP3 and ISO/IEC JTC1/SC. Incheon, Korea(South): [s.n.]
Li B, Li H Q, Li L and Zhang J L. 2014. λ domain rate control algorithm for high efficiency video coding. IEEE Transactions on Image Processing, 23(9): 3841-3854[DOI: 10.1109/TIP.2014.2336550]
Li F L, Fan G Y, Wang X W, Liu S C, Xie K and Sun Q. 2020. State-of-the-art survey of intent-based networking. Journal of Software, 31(8): 2574-2587
李福亮, 范广宇, 王兴伟, 刘树成, 谢坤, 孙琼. 2020. 基于意图的网络研究综述. 软件学报, 31(8): 2574-2587[DOI: 10.13328/j.cnki.jos.006088]
Li G N, Liu Y B and DaiQ H. 2014. Free-viewpoint video relighting from multi-view sequence under general illumination. Machine Vision and Applications, 25(7): 1737-1746[DOI: 10.1007/s00138-013-0559-0]
Li J L, Zhao X and Yang Y. 2021. Review of interactive video quality assessment methods. ZTE Technology Journal, 2021(1): 44-47
李继龙, 赵雪, 杨铀. 2021. 交互式视频质量评价方法研究进展. 中兴通讯技术, 2021(1): 44-47
Liu D, Wang L Z, Li L, Xiong Z W, Wu F and Zeng W J. 2016a. Pseudo-sequence-based light field image compression//Proceedings of 2016 IEEE International Conference on Multimedia and Expo Workshops. Seattle, USA: IEEE: 1-4[ DOI: 10.1109/ICMEW.2016.7574674 http://dx.doi.org/10.1109/ICMEW.2016.7574674 ]
Liu D Y, Liu X G and Li Y Y. 2016b. Fast CU size decisions for HEVC intra frame coding based on support vector machines//Proceedings of the 14th IEEE Intl Conference on Dependable, Autonomic, and Secure Computing, 14th Intl Conference on Pervasive Intelligence and Computing, 2nd Intl Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress. Auckland, New zealand: IEEE: 594-597[ DOI: 10.1109/DASC-PICom-DataCom-CyberSciTec.2016.168 http://dx.doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.168 ]
Liu Y, Li Z G and Soh Y C. 2008. Region-of-interest based resource allocation for conversational video communication of H. 264/AVC. IEEE Transactions on Circuits and Systems for Video Technology, 18(1): 134-139[DOI: 10.1109/TCSVT.2007.913754]
Liu Z Y, Yu X Y, Chen S L and Wang D S. 2016c. CNN oriented fast HEVC intra CU mode decision//Proceedings of 2016 IEEE International Symposium on Circuits and Systems. Montreal, Canada: IEEE: 2270-2273[ DOI: 10.1109/ISCAS.2016.7539036 http://dx.doi.org/10.1109/ISCAS.2016.7539036 ]
Lu J H. 2017. Reflections on wireless communications. ZTE Technology Journal, 23(1): 2-5
陆建华. 2017. 无线通信若干问题的思考. 中兴通讯技术, 23(1): 2-5[DOI: 10.3969/j.issn.1009-6868.2017.01.001]
Lu K, Yang Y and Zhen Y. 2016. Stereo data sensing, computation and perception. Neurocomputing, 215: 1-2[DOI: 10.1016/j.neucom.2016.06.010]
Luo C F, Kong D H, Liu X K, Xu K and Yang H. 2017. A business realization of VR panoramic video in smart home. Telecommunications Science, 33(10): 185-193
罗传飞, 孔德辉, 刘翔凯, 徐科, 杨浩. 2017. 智慧家庭的VR全景视频业务实现. 电信科学, 33(10): 185-193[DOI: 10.11959/j.issn.1000-0801.2017291]
Meng X K, Wang Q, Wei N and Fu G T. 2019. Research on virtual reality omnidirectional video system for broadcasting network. Radio and TV Broadcast Engineering, 46(7): 78-81
孟祥昆, 王强, 魏娜, 付光涛. 2019. 面向广播电视网络的虚拟现实全景视频系统方案研究. 广播与电视技术, 46(7): 78-81[DOI: 10.16171/j.cnki.rtbe.20190007013]
Pan F, Lin X, Rahardja S, Lim K P, Li Z G, Wu D J and Wu S. 2005. Fast mode decision algorithm for intraprediction in H. 264/AVC video coding. IEEE Transactions on Circuits and Systems for Video Technology, 15(7): 813-822[DOI: 10.1109/TCSVT.2005.848356]
ParandehGheibi A, Médard, Ozdaglar A and Shakkottai S. 2011. Avoiding interruptions-a QoE reliability function for streaming media applications. IEEE Journal on Selected Areas in Communications, 29(5): 1064-1074[DOI: 10.1109/JSAC.2011.110516]
Ravi S and Larochelle H. 2017. Optimization as a model for few-shot learning//Proceedings of International Conference on Learning Representations.[s.l.]: [s.n.]
Rezaee A, Du Pin Calmon F, Zeger L M and Medard M. 2012. Speeding multicast by acknowledgment reduction technique (SMART) enabling robustness of QoE to the number of users. IEEE Journal on Selected Areas in Communications, 30(7): 1270-1280[DOI: 10.1109/JSAC.2012.120812]
Ribas-Corbera J and Lei S. 1999. Rate control in DCT video coding for low-delay communications. IEEE Transactions on Circuits and Systems for Video Technology, 9(1): 172-185[DOI: 10.1109/76.744284]
Santos M A, Villalon J and Orozco-Barbosa L. 2012. QoE-Aware multicast mechanism for video communications over IEEE 802.11 WLANs. IEEE Selected Areas in Communications, 30(7): 1205-1214[DOI: 10.1109/JSAC.2012.120806]
Sheikh H R, Sabir M F and Bovik A C. 2006. A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Transactions on Image Processing, 15(11): 3440-3451[DOI: 10.1109/TIP.2006.881959]
Shen X L, Yu L and Chen J. 2012. Fast coding unit size selection for HEVC based on Bayesian decision rule//2012 Picture Coding Symposium. Krakow, Poland: IEEE: 453-456[ DOI: 10.1109/PCS.2012.6213252 http://dx.doi.org/10.1109/PCS.2012.6213252 ]
Smolic A. 2011. 3D video and free viewpoint video-from capture to display. Pattern Recognition, 44(9): 1958-1968[DOI: 10.1016/j.patcog.2010.09.005]
Stockhammer T. 2011. Dynamic adaptive streaming over HTTP-standards and design principles//Proceedings of the 2nd Annual ACM Conference on Multimedia Systems. San Jose, USA: ACM: 133-144[ DOI: 10.1145/1943552.1943572 http://dx.doi.org/10.1145/1943552.1943572 ]
Sullivan G J, Ohm J R, Han W J and Wiegand T. 2012. Overview of the high efficiency video coding (HEVC) standard. IEEE Transactions on Circuits and Systems for Video Technology, 22(12): 1649-1668[DOI: 10.1109/TCSVT.2012.2221191]
Suwajanakorn S, Seitz S M and Kemelmacher-Shlizerman I. 2017. Synthesizing Obama: learning lip sync from audio. ACM Transactions on Graphics, 36(4): 95[DOI: 10.1145/3072959.3073640]
Tanimoto M. 2006. Overview of free viewpoint television. Signal Processing: Image Communication, 21(6): 454-461[DOI: 10.1016/j.image.2006.03.009]
Thies J, Zollhöfer M, Stamminger M, Theobalt C and Nieβner M. 2016. Face2Face: real-time face capture and reenactment of RGB videos//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 2387-2395[ DOI: 10.1109/CVPR.2016.262 http://dx.doi.org/10.1109/CVPR.2016.262 ]
Tong Y, Liao W H and Ji Q. 2007. Facial action unit recognition by exploiting their dynamic and semantic relationships. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(10): 1683-1699[DOI: 10.1109/TPAMI.2007.1094]
Toni L, Cosman P C and Milstein L B. 2012. Channel coding optimization based on slice visibility for transmission of compressed video over OFDM Channels. IEEE Journal on Selected Areas in Communications, 30(7): 1172-1183[DOI: 10.1109/JSAC.2012.120803]
Vanne J, Viitanen M and Hämäläinen T D. 2014. Efficient mode decision schemes for HEVC inter prediction. IEEE Transactions on Circuits and Systems for Video Technology, 24(9): 1579-1593[DOI: 10.1109/TCSVT.2014.2308453]
Vetro A, Sun H F and Wang Y. 1999. MPEG-4 rate control for multiple video objects. IEEE Transactions on Circuits and Systems for Video Technology, 9(1): 186-199[DOI: 10.1109/76.744285]
Vetro A, Wiegand T and Sullivan G J. 2011. Overview of the stereo and multiview video coding extensions of the H. 264/MPEG-4 AVC standard. Proceedings of the IEEE, 99(4): 626-642[DOI: 10.1109/JPROC.2010.2098830]
Wandell B and Thomas S. 1997. Foundations of Vision. USA: Sinauer Associates, Inc.
Wang H L, Kwong S and Kok C W. 2007. An efficient mode decision algorithm for H. 264/AVC encoding optimization. IEEE Transactions on Multimedia, 9(4): 882-888[DOI: 10.1109/TMM.2007.893345]
Wang J F, Wang J C, Chen J T, Tsai A C and Paul A. 2006. A novel fast algorithm for intra mode decision in H.264/AVC encoders//2006 IEEE International Symposium on Circuits and Systems. Kos: IEEE: 4[ DOI: 10.1109/ISCAS.2006.1693380 http://dx.doi.org/10.1109/ISCAS.2006.1693380 ]
Watkinson J. 2004. The MPEG Handbook: MPEG-1, MPEG-2, MPEG-4. Oxford: Elsevier/Focal Press
Weiland J D and Humayun M S. 2008. Visual prosthesis. Proceedings of the IEEE, 96(7): 1076-1084[DOI: 10.1109/JPROC.2008.922589]
Wiegand T, Lightstone M, Mukherjee D, Campbell T G and Mitra S K. 1996. Rate-distortion optimized mode selection for very low bit rate video coding and the emerging H. 263 standard. IEEE Transactions on Circuits and Systems for Video Technology, 6(2): 182-190[DOI: 10.1109/76.488825]
Wiegand T, Sullivan G J, Bjontegaard G and Luthra A. 2003. Overview of the H. 264/AVC video coding standard. IEEE Transactions on Circuits and Systems for Video Technology, 13(7): 560-576[DOI: 10.1109/TCSVT.2003.815165]
Wilson G M and Sasse M A. 2000. Do users always know what's good for them? Utilising physiological responses to assess media quality//McDonald S, Waern Y and Cockton G, eds. People and Computers XIV-Usability or Else! London: Springer: 327-339[ DOI: 10.1007/978-1-4471-0515-2_22 http://dx.doi.org/10.1007/978-1-4471-0515-2_22 ]
Wu D, Pan F, Lim K P, Wu S, Li Z G, Lin X, Rahardja S and Ko C C. 2005. Fast intermode decision in H. 264/AVC video coding. IEEE Transactions on Circuits and Systems for Video Technology, 15(7): 953-958[DOI: 10.1109/TCSVT.2005.848304]
Wu K J, Liu Q, Yin Y G and Yang Y. 2020a. Gaussian guided inter prediction for focal stack images compression//Proceedings of 2020 Data Compression Conference. Snowbird, USA: IEEE: 63-72[ DOI: 10.1109/DCC47342.2020.00014 http://dx.doi.org/10.1109/DCC47342.2020.00014 ]
Wu K J, Yang Y, Yu M and Liu Q. 2020b. Block-wise focal stack image representation for end-to-end applications. Optics Express, 28(26): 40024-40043[DOI: 10.1364/OE.413523]
Xiong J, Li H L, Wu Q B and Meng F M. 2014. A fast HEVC inter CU selection method based on pyramid motion divergence. IEEE Transactions on Multimedia, 16(2): 559-564[DOI: 10.1109/TMM.2013.2291958]
Xu J Z, Joshi R and Cohen R A. 2016. Overview of the emerging HEVC screen content coding extension. IEEE Transactions on Circuits and Systems for Video Technology, 26(1): 50-62[DOI: 10.1109/TCSVT.2015.2478706]
Xu X Z and He Y. 2008. Improvements on fast motion estimation strategy for H. 264/AVC. IEEE Transactions on Circuits and Systems for Video Technology, 18(3): 285-293[DOI: 10.1109/TCSVT.2008.918122]
Yan J J, Wu D P, Wang H G and Wang R Y. 2019. Multipoint cooperative transmission for virtual reality in 5G new radio. IEEE MultiMedia, 26(1): 51-58[DOI: 10.1109/MMUL.2018.2879592]
Yang H, Shen L Q, Dong X C, Ding Q, An P and Jiang G Y. 2020. Low-complexity CTU partition structure decision and fast intra mode decision for versatile video coding. IEEE Transactions on Circuits and Systems for Video Technology, 30(6): 1668-1682[DOI: 10.1109/TCSVT.2019.2904198]
Yang X K, Lin W S, Lu Z K, Lin X, Rahardja S, Ong E and Yao S S. 2005. Rate control for videophone using local perceptual cues. IEEE Transactions on Circuits and Systems for Video Technology, 15(4): 496-507[DOI: 10.1109/TCSVT.2005.844458]
Yang X K, Lin W S, Lu Z K, Lin X, Rahardja S, Ong E and Yao S S. 2005. Rate control for videophone using local perceptual cues. IEEE Transactions on Circuits and Systems for Video Technology, 15(4): 496-507[DOI: 10.1109/TCSVT.2005.844458]
Yang Y and Dai Q. 2010. Contourlet-based image quality assessment for synthesised virtual image. Electronics Letters, 46(7): 492-494[DOI: 10.1049/el.2010.3522]
Yang Y and Liu Q. 2017. Illumination attributes coding for virtual reality broadcasting system//Proceedings of 2017 Data Compression Conference. Snowbird, USA: IEEE: 469-469[ DOI: 10.1109/DCC.2017.11 http://dx.doi.org/10.1109/DCC.2017.11 ]
Yang Y, Liu Q, Gao Y, Xiong B B, Yu L, Luan H B, Ji R R and Tian Q. 2013. Stereotime: a wireless 2D and 3D switchable video communication system//Proceedings of the 21st ACM international conference on Multimedia. Barcelona, Spain: ACM: 473-474[ DOI: 10.1145/2502081.2502275 http://dx.doi.org/10.1145/2502081.2502275 ]
Yang Y, Wang X, Liu Q, Xu M L and Wu W. 2016. User models of subjective image quality assessment on virtual viewpoint in free-viewpoint video system. Multimedia Tools and Applications, 75(20): 12499-12519[DOI: 10.1007/s11042-014-2321-7]
Yang Y, Yang J Y and Adeli E. 2020. Guest editorial: AI-powered 3D vision. Journals and Magazines, 14(12): 2627-2629[DOI: 10.1049/iet-ipr.2020.1194]
Yang Y, Yu M and Jiang G Y. 2009. Survey on interactive three-dimensional video systems. Journal of Computer-Aided Design and Computer Graphics, 21(5): 569-578
杨铀, 郁梅, 蒋刚毅. 2009. 交互式三维视频系统研究进展. 计算机辅助设计与图形学学报, 21(5): 569-578
Yoo H M and Suh J W. 2013. Fast coding unit decision algorithm based on inter and intra prediction unit termination for HEVC//Proceedings of 2013 IEEE International Conference on Consumer Electronics. Las Vegas, USA: IEEE: 300-301[ DOI: 10.1109/ICCE.2013.6486903 http://dx.doi.org/10.1109/ICCE.2013.6486903 ]
You Z X, An P and Zhang Z Y. 2012. Key technologiesof 3D auto-stereoscopic display systems and corresponding applications in China pavilion of 2010 expo. Video Engineering, 36(2): 19-23
尤志翔, 安平, 张兆杨. 2012. 3D自由视点视频技术及其在中国馆中的应用. 电视技术, 36(2): 19-23[DOI: 10.3969/j.issn.1002-8692.2012.02.005]
Yu L Y, Yu J, Li M Y and Ling Q. 2021. Multimodal inputs driven talking face generation with spatial-temporal dependency. IEEE Transactions on Circuits and Systems for Video Technology, 31(1): 203-216[DOI: 10.1109/TCSVT.2020.2973374]
Zakharov E, Shysheya A, Burkov E and Lempitsky V. 2019. Few-shot adversarial learning of realistic neural talking head models//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea(South): IEEE: 9459-9468[ DOI: 10.1109/ICCV.2019.00955 http://dx.doi.org/10.1109/ICCV.2019.00955 ]
Zhang H and Ma Z. 2014. Fast intra mode decision for high efficiency video coding (HEVC). IEEE Transactions on Circuits and Systems for Video Technology, 24(4): 660-668[DOI: 10.1109/TCSVT.2013.2290578]
Zhang J N, Zeng X F, Wang M M, Pan Y S, Liu L, Liu Y, Ding Y and Fan C J. 2020. FReeNet: multi-identity face reenactment//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 5326-5335[ DOI: 10.1109/CVPR42600.2020.00537 http://dx.doi.org/10.1109/CVPR42600.2020.00537 ]
Zhang Y and Yu L. 2012. Recent MPEG standardization activities on 3D video coding. ZTE Communications, 10(2): 9-12
Zhang Y, Kwong S, Wang X, Yuan H, Pan Z Q and Xu L. 2015. Machine learning-based coding unit depth decisions for flexible complexity allocation in high efficiency video coding. IEEE Transactions on Image Processing, 24(7): 2225-2238[DOI: 10.1109/TIP.2015.2417498]
Zhu W J, Ding W P, Xu J Z, Shi Y H and Yin B C. 2014. Screen content coding based on HEVC framework. IEEE Transactions on Multimedia, 16(5): 1316-1326[DOI: 10.1109/TMM.2014.2315782]
相关作者
相关机构
京公网安备11010802024621