图像增强对显著性目标检测的影响研究
The analysis of image enhancement on salient object detection
- 2022年27卷第7期 页码:2129-2147
收稿日期:2020-12-14,
修回日期:2021-01-25,
录用日期:2021-2-2,
纸质出版日期:2022-07-16
DOI: 10.11834/jig.200735
移动端阅览
浏览全部资源
扫码关注微信
收稿日期:2020-12-14,
修回日期:2021-01-25,
录用日期:2021-2-2,
纸质出版日期:2022-07-16
移动端阅览
目的
2
雾霾、雨雪天气和水下等非理想环境因素会引起图像退化,导致出现低质图像,从而影响人类主观视觉感受及机器视觉应用任务的性能,因此,低质图像被利用之前进行图像增强成为惯常的预处理过程。然而,图像增强能否提高图像机器视觉应用任务的性能及影响程度等问题鲜有系统性研究。针对上述问题,本文以图像显著性目标检测这一机器视觉应用为例,研究图像增强对显著性目标检测性能的影响。
方法
2
首先利用包括5种传统方法、6种深度学习方法等共11种典型图像增强方法对图像进行增强处理,然后利用8种典型的显著性目标检测方法对增强前后的图像分别进行显著性目标检测实验,并对比分析其结果。
结果
2
实验表明,图像增强对低质图像显著性目标检测方法性能的促进作用不明显,某些增强方法甚至表现出负面影响,也存在同一增强方法对不同的显著性目标检测方法作用不同的现象。
结论
2
图像增强对于显著性目标检测及其他的机器视觉应用的实际效果值得进一步研究,如何根据图像机器视觉应用的需求来选择和设计有效的增强方法需进一步探讨。
Objective
2
Image has become an important carrier of information acquisition and dissemination recently. The real scenario images are constrained by low-quality features. It is challenged to resolve contrast degradation
color deviation
and information loss issues for low visibility images related to rain
fog
underwater
and low illumination. Current enhancement processing is beneficial to enhance the high-level application performance of the low-quality images. However
some enhancement methods can enhance the high-level application effects of low-quality image
but some enhancement methods have a weak effect or even negative effect. Therefore
it is vital to systematically develop the enhancement processing effect in high-level applications of low-quality images. Our research is focused on low-quality images (underwater images
haze images) and takes the effect of image high-level application based on salient object detection.
Method
2
First
these low-quality images are processed via various current image enhancement approaches. Salient object detection is then performed on the enhanced images. Then
the influence of image enhancement on salient object detection performance is compared and analyzed. We implement a classification in the context of image enhancement and salient object detection methods. We conduct an analysis about those models further. Furthermore
we explore some regularized image enhancement methods and salient object detection approaches. Finally
the applications of image enhancement for salient object detection are verified via scientific objective and/or subjective evaluation.
Result
2
The experimental results demonstrate that the image enhancement methods for salient object detection are not clarified in low-quality images.
Conclusion
2
Hence
we summarize the same enhancement method to illustrate the different effects for different salient object detection. First
the current existing enhancement methods are mainly designed to meet human visual effects
while images like those are not necessarily consistent with the needs of high-level applications. It is a challenge that the effect of image enhancement on salient object detection. It needs an option for effective enhancement method based on salient object detection. Our research challenge issues should focus on the following aspects as mentioned below: first
it should be refined in the light of the different low-quality image degradation factors. Different low-quality images show different degradation results for different degradation
such as color shift of underwater imaging
and object blur of hazed image. We should pick and exploit corresponding low-quality image enhancement and salient object detection methods towards various degradation issues
as well as probe the influence of these enhancement methods on salient object detection for low-quality images further. Second
the interaction between enhancement methods and salient detection methods should be developed. Generally
Salient object detection for low-quality images by enhancement mainly includes two parts: image enhancement and salient object detection. However
different enhancement methods have different effects on salient object detection for low-quality images. Therefore
it is necessary to study the internal mechanism of different image enhancement methods and different image salient object detection methods
and explore the deeper correlation between the design of the image enhancement model and the construction of the salient object detection model further. Third
we should focus on exploiting an end-to-end framework for it. It is challenging to obtain good salient object detection results on the aspect of the degradation of low-quality images. To develop an end-to-end framework
future work can be based on the fusion of low-quality image enhancement and salient object detection models.
Achanta R, Estrada F, Wils P and Süsstrunk S. 2008. Salient region detection and segmentation//Proceedings of the 6th International Conference on Computer Vision Systems. Santorini, Greece: Springer: 66-75 [ DOI: 10.1007/978-3-540-79547-6_7 http://dx.doi.org/10.1007/978-3-540-79547-6_7 ]
Bruce N D B and Tsotsos J K. 2005. Saliency based on information maximization//Proceedings of the 18th International Conference on Neural Information Processing Systems. Vancouver, Canada: MIT Press: 155-162
Chen D D, Chen L, Zhang Y X and Yan H. 2017. Single-image dehazing algorithm to correct atmosphere veil. Journal of Image and Graphics, 22(6): 787-796
陈丹丹, 陈莉, 张永新, 严寒. 2017. 修正大气耗散函数的单幅图像去雾. 中国图象图形学报, 22(6): 787-796 [DOI: 10.11834/jig.160616]
Chen D D, He M M, Fan Q N, Liao J, Zhang L H, Hou D D, Yuan L and Hua G. 2019. Gated context aggregation network for image dehazing and deraining//Proceedings of 2019 IEEE Winter Conference on Applications of Computer Vision (WACV). Waikoloa, USA: IEEE: 1375-1383 [ DOI: 10.1109/WACV.2019.00151 http://dx.doi.org/10.1109/WACV.2019.00151 ]
Chen Z Y, Xu Q Q, Cong R M and Huang Q M. 2020. Global context-aware progressive aggregation network for salient object detection. Proceedings of the AAAI Conference on Artificial Intelligence, 34(7): 10599-10606 [DOI: 10.1609/aaai.v34i07.6633]
Deng Z J, Hu X W, Zhu L, Xu X M, Qin J, Han G Q and Heng P A. 2018. R 3 Net: recurrent residual refinement network for saliency detection//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm, Sweden: [s. n.]: 684-690 [ DOI: 10.24963/ijcai.2018/95 http://dx.doi.org/10.24963/ijcai.2018/95 ].
Engin D, Genc A and Ekenel H K. 2018. Cycle-dehaze: enhanced CycleGAN for single image dehazing//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Salt Lake City, USA: IEEE: 938-946 [ DOI: 10.1109/CVPRW.2018.00127 http://dx.doi.org/10.1109/CVPRW.2018.00127 ]
Fabbri C, Islam M J and Sattar J. 2018. Enhancing underwater imagery using generative adversarial networks//Proceedings of 2018 IEEE International Conference on Robotics and Automation(ICRA). Brisbane, Australia: IEEE: 7159-7165 [ DOI: 10.1109/ICRA.2018.8460552 http://dx.doi.org/10.1109/ICRA.2018.8460552 ]
Guo H W, He H T and Chen M Y. 2004. Gamma correction for digital fringe projection profilometry. Applied Optics, 43(14): 2906-2914 [DOI: 10.1364/AO.43.002906]
Guo J C, Li C Y, Guo C L and Chen S J. 2017. Research progress of underwater image enhancement and restoration methods. Journal of Image and Graphics, 22(3): 273-287
郭继昌, 李重仪, 郭春乐, 陈善继. 2017. 水下图像增强和复原方法研究进展. 中国图象图形学报, 22(3): 273-287 [DOI: 10.11834/jig.20170301]
He K M, Sun J and Tang X O. 2009. Single image haze removal using dark channel prior//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Miami, USA: IEEE: 1956-1963 [ DOI: 10.1109/CVPR.2009.5206515 http://dx.doi.org/10.1109/CVPR.2009.5206515 ]
Hou Q B, Cheng M M, Hu X W, Borji A, Tu Z W and Torr P. 2017. Deeply supervised salient object detection with short connections//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE: 5300-5309 [ DOI: 10.1109/CVPR.2017.563 http://dx.doi.org/10.1109/CVPR.2017.563 ]
Hou Q B, Cheng M M, Hu X W, Borji A, Tu Z W and Torr P H S. 2019. Deeply supervised salient object detection with short connections. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(4): 815-828 [DOI: 10.1109/TPAMI.2018.2815 688]
Hu X W, Fu C W, Zhu L, Wang T Y and Heng P A. 2021. SAC-Net: spatial attenuation context for salient object detection. IEEE Transactions on Circuits and Systems for Video Technology, 31(3): 1079-1090 [DOI: 10.1109/TCSVT.2020.2995220]
Huang P S, Shen C H and Hsiao H F. 2018. RGBD salient object detection using spatially coherent deep learning framework//Proceedings of the 23rd IEEE International Conference on Digital Signal Processing. Shanghai, China: IEEE: 1-5 [ DOI: 10.1109/ICDSP.2018.8631584 http://dx.doi.org/10.1109/ICDSP.2018.8631584 ]
Islam M J, Luo P G and Sattar J. 2020. Simultaneous enhancement and super-resolution of underwater imagery for improved visual perception. [EB/OL]. [2020-02-04] . https://arxiv.org/pdf/2002.01155.pdf https://arxiv.org/pdf/2002.01155.pdf [ DOI: 10.15607/RSS.2020.XVI.018 http://dx.doi.org/10.15607/RSS.2020.XVI.018 ].
Itti L, Koch C and Niebur E. 1998. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11): 1254-1259 [DOI: 10.1109/34.730558]
Land E H and McCann J J. 1971. Lightness and retinex theory. Journal of the Optical Society of America, 61(1): 1-11 [DOI: 10.1364/JOSA.61.000001]
Li B Y, Ren W Q, Fu D P, Tao D C, Feng D, Zeng W J and Wang Z Y. 2019a. Benchmarking single-image dehazing and beyond. IEEE Transactions on Image Processing, 28(1): 492-505 [DOI: 10.1109/TIP.2018.2867951]
Li C Y, Guo J C, Cong R M, Pang Y W and Wang B. 2016. Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior. IEEE Transactions on Image Processing, 25(12): 5664-5677 [DOI: 10.1109/TIP.2016.2612882]
Li C Y, Guo C L, Ren W Q, Cong R M, Hou J H, Kwong S and Tao D C. 2020. An underwater image enhancement benchmark dataset and beyond. IEEE Transactions on Image Processing, 29: 4376-4389 [DOI: 10.1109/TIP.2019.2955241]
Li G B and Yu Y Z. 2018. Contrast-oriented deep neural networks for salient object detection. IEEE Transactions on Neural Networks and Learning Systems, 29(12): 6038-6051 [DOI: 10.1109/TNNLS.2018.2817540]
Liu J J, Hou Q B, Cheng M M, Feng J S and Jiang J M. 2019a. A simple pooling-based design for real-time salient object detection//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE: 3912-3921 [ DOI: 10.1109/CVPR.2019.00404 http://dx.doi.org/10.1109/CVPR.2019.00404 ]
Liu N, Han J W and Yang M H. 2018. PiCANet: learning pixel-wise contextual attention for saliency detection//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 3089-3098 [ DOI: 10.1109/CVPR.2018.00326 http://dx.doi.org/10.1109/CVPR.2018.00326 ]
Liu T, Sun J, Zheng N N, Tang X O and Shum H Y. 2007. Learning to detect a salient object//Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Minneapolis, USA: IEEE: 1-8 [ DOI: 10.1109/CVPR.2007.383047 http://dx.doi.org/10.1109/CVPR.2007.383047 ]
Liu T, Yuan Z J, Sun J, Wang J D, Zheng N N, Tang X O and Shum H Y. 2011. Learning to detect a salient object. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(2): 353-367 [DOI: 10.1109/TPAMI.2010.70]
Liu Y, Han J G, Zhang Q and Shan C F. 2020. Deep salient object detection with contextual information guidance. IEEE Transactions on Image Processing, 29: 360-374 [DOI: 10.1109/TIP.2019.2930906]
Liu Y, Zhang Q, Zhang D W and Han J G. 2019b. Employing deep part-object relationships for salient object detection//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE: 1232-1241 [ DOI: 10.1109/ICCV.2019.00132 http://dx.doi.org/10.1109/ICCV.2019.00132 ]
Mai J M, Wang M H, Liang Y and Cai R C. 2016. Single image dehazing algorithm by feature learning. Journal of Image and Graphics, 21(4): 464-474
麦嘉铭, 王美华, 梁云, 蔡瑞初. 2016. 特征学习的单幅图像去雾算法. 中国图象图形学报, 21(4): 464-474 [DOI: 10.11834/jig.20160408]
Pang Y W, Zhao X Q, Zhang L H and Lu H C. 2020. Multi-scale interactive network for salient object detection//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE: 9410-9419 [ DOI: 10.1109/CVPR42600.2020.00943 http://dx.doi.org/10.1109/CVPR42600.2020.00943 ]
Parkhurst D, Law K and Niebur E. 2002. Modeling the role of salience in the allocation of overt visual attention. Vision Research, 42(1): 107-123 [DOI: 10.1016/S0042-6989(01)00250-4]
Qin X, Wang Z L, Bai Y C, Xie X D and Jia H Z. 2020. FFA-Net: feature fusion attention network for single image dehazing. Proceedings of the AAAI Conference on Artificial Intelligence, 34(7): 11908-11915 [DOI: 10.1609/aaai.v34i07.6865]
Qin X B, Zhang Z C, Huang C Y, Gao C, Dehghan M and Jagersand M. 2019. BASNet: boundary-aware salient object detection//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE: 7479-7489 [ DOI: 10.1109/CVPR.2019.00766 http://dx.doi.org/10.1109/CVPR.2019.00766 ]
Tang Y, Zou W B, Jin Z, Chen Y H, Hua Y and Li X. 2019. Weakly supervised salient object detection with spatiotemporal cascade neural networks. IEEE Transactions on Circuits and Systems for Video Technology, 29(7): 1973-1984 [DOI: 10.1109/TCSVT.2018.2859773]
Uplavikar P, Wu Z Y and Wang Z Y. 2019. All-in-one underwater image enhancement using domain-adversarial learning. [EB/OL]. [2019-05-30] . https://arxiv.org/pdf/1905.13342.pdf https://arxiv.org/pdf/1905.13342.pdf
Wang B, Chen Q, Zhou M, Zhang Z Q, Jin X G and Gai K. 2020. Progressive feature polishing network for salient object detection. Proceedings of the AAAI Conference on Artificial Intelligence, 34(7): 12128-12135 [DOI: 10.1609/aaai.v34i07.6892]
Wang Y P, Zhao X, Hu X C, Li Y and Huang K Q. 2019. Focal boundary guided salient object detection. IEEE Transactions on Image Processing, 28(6): 2813-2824 [DOI: 10.1109/TIP.2019.2891055]
Wu Z, Su L and Huang Q M. 2019. Cascaded partial decoder for fast and accurate salient object detection//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE: 3907-3916 [ DOI: 10.1109/CVPR.2019.00403 http://dx.doi.org/10.1109/CVPR.2019.00403 ]
Yeh C H, Huang C H and Kang L W. 2020. Multi-scale deep residual learning-based single image haze removal via image decomposition. IEEE Transactions on Image Processing, 29: 3153-3167 [DOI: 10.1109/TIP.2019.2957929]
Zhang P P, Liu W, Lu H C and Shen C H. 2019. Salient object detection with lossless feature reflection and weighted structural loss. IEEE Transactions on Image Processing, 28(6): 3048-3060 [DOI: 10.1109/TIP.2019.2893535]
Zhao J X, Cao Y, Fan D P, Cheng M M, Li X Y and Zhang L. 2019. Contrast prior and fluid pyramid integration for RGBD salient object detection//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE: 3927-3936 [ DOI: 10.1109/CVPR.2019.00405 http://dx.doi.org/10.1109/CVPR.2019.00405 ]
Zuiderveld K. 1994. VIII. 5-Contrast limited adaptive histogram equalization//Graphics Gems IV. San Diego, CA: Academic Press: 474-485 [ DOI: 10.1016/B978-0-12-336156-1.50061-6 http://dx.doi.org/10.1016/B978-0-12-336156-1.50061-6 ]
相关作者
相关机构