海事监控视频舰船目标检测研究现状与展望
Maritime surveillance videos based ships detection algorithms: a survey
- 2022年27卷第7期 页码:2078-2093
收稿:2020-11-24,
修回:2021-4-22,
录用:2021-4-29,
纸质出版:2022-07-16
DOI: 10.11834/jig.200674
移动端阅览

浏览全部资源
扫码关注微信
收稿:2020-11-24,
修回:2021-4-22,
录用:2021-4-29,
纸质出版:2022-07-16
移动端阅览
舰船目标检测是海域监控、港口流量统计、舰船身份识别以及行为分析与取证等智能海事应用的基石。随着我国海洋强国建设的推进,智慧航运和智慧海洋工程迅速发展,对通过海事监控视频开展有效的舰船目标检测识别以确保航运和海洋工程安全的需求日益紧迫。本文针对基于海事监控视频的舰船目标检测任务,回顾了舰船目标检测数据集及性能评价指标、基于传统机器学习和基于卷积神经网络的深度学习的目标检测方法等方面的国内外研究现状,分析了海洋环境中舰船目标检测任务面临的舰船目标尺度的多样性、舰船类别的多样性、海洋气象的复杂性、水面的动态性、相机的运动性和图像的低质量等技术难点,并通过实验验证,在多尺度特征融合、数据增广和能耗降低等方面提出了舰船目标检测的优化方法;同时,结合前人研究指出舰船目标检测数据集的发展应关注分类粒度的适宜性、标注的一致性和数据集的易扩充性,应加强对多尺度目标(尤其是小型目标)检测的模型结构的研究,为进一步提升舰船目标检测任务的综合性能,促进舰船目标检测技术的应用提供了新的思路。
Maritime surveillance videos based object detection methods aims to meet the quick response requirements through an effective ship detection and recognition system against the backdrop of smart ocean technology. Our research has focused on this aspects as mentioned below: 1) to summarize current approaches and datasets and discuss the challenging issues of them; 2) to analyze the features and the challenges of maritime surveillance ship detection; 3) to clarify the credibility of their accuracy and efficiency and demonstrate our research potential further. In the first phase
we summarize existing ship detection algorithms based on maritime surveillance videos
introduce the common ship detection datasets and ship detection methods available
and some evaluation metrics followed for ship detection tasks. Customized attention is yielded to the interconnected results between traditional computer vision algorithms for ship identification
which mainly consist of modules such as horizon detection
background subtraction and foreground extraction
and some deep learning methods based on fast region convolutional neural network (Fast R-CNN)
single shot multibox detector (SSD) and you only look once (YOLO). It can be sorted out that although mean average precision (mAP) metric remains recognized index to measure the performance of models
its effectiveness issue is still discussed in terms of ship detection tasks and present novel metrics
including bottom edge proximity (BEP)
n-multiple object detection precision (N-MODP) and n-multiple object detection accuracy (N-MODA). Current datasets are capable to detect vessels motion via deep learning models. But
the accuracy and robustness of training are required to be improved greatly due to extreme weather condition and light variation or inconsistent labels. In the second phase
we evaluate the features and challenges for ship detection. The difference lies between ship detection and regular object detection. For example
a coastline platform or a ship sensor have very large visible ranges and leading to a big scale variability. In addition
it is challenged to design a set of models adapt to various image domain scenarios derived from extreme marine weather conditions. Photographic system has to withstand exposure to extremes of temperature
high vibration levels
humidity and chemicals as well. The harsh environment combined with noise pollution and limited network bandwidth can cause the loss of image quality and make uncertainty with information loss for the models. In the third phase
we improve the accuracy and efficiency of ship detection algorithms and evaluate some common methods for ship detection technology on the three aspects as following: 1) multi-scale feature fusion: we carry out convolutional neural network (CNN) models manipulation based on different input scales and backbones. Some of the object detection models are degraded when facing large variations result from large field of view among ship objects during voyage. It is suggested that input scale determines the upper bound of accuracy of CNN models
and CNN models or backbones which are specially designed for multi-scale detection tasks narrow the gap of accuracy between different input scales. 2) Data augmentation: Waves and wind induce pitch and roll rotations on the sea
which is demanding for ship detection. Moreover
weather change and day-night brightness variation mean the image data shall be in multiple domains
which requires the detection models to be robust to images from different domains
or even from domains that have not been included in training samples. In light of the above-mentioned variables and marine based camera motion results
we evaluate the performance improvement when data augmentation is applied to image translation and rotation. We also adjust photo brightness and use Gaussian blur to simulate the blur caused by water condensed on cameras. Almost 5% increase is observed in mAP
verifying the robustness of data augmentation in ship detection. Other effective approaches include domain transfer based on generative adversarial network (GAN) or domain-independent models derived of multi-domain object detection tasks. 3) Light-weighted models and energy optimization: Computing complexity is constrained of semantic constraints like the horizon; Common object detection optimization is used to lower computation load
including light-weighted backbones like MobileNet and ShuffleNet. We calculate the parameter quantity and computing operation quantity of object detection models as well as each accuracy of them. We recommended that further studies should be considered on the following aspects: 1) to develop new datasets or existing datasets improvement based on sufficient coverage of possible conditions
high-quality annotations
precise classification and easier extension
respectively; 2) to decrease arithmetic operations and energy consumption in object detection models; 3) to strengthen multi-scale target detection modeling; 4) to enhance data fusion between object detection in multi-sensors images and the semantic ability of single image or multiple images interpretation.
Arruda V F, Paixão T M, Berriel R F, De Souza A F, Badue C, Sebe N and Oliveira-Santos T. 2019. Cross-domain car detection using unsupervised image-to-image translation: from day to night//Proceedings of 2019 International Joint Conference on Neural Networks (IJCNN). Budapest, Hungary: IEEE: 1-8 [ DOI: 10.1109/IJCNN.2019.8852008 http://dx.doi.org/10.1109/IJCNN.2019.8852008 ]
Bloisi D D, Iocchi L, Pennisi A and Tombolini L. 2015. ARGOS-Venice boat classification//Proceedings of the 12th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Karlsruhe, Germany: IEEE: 1-6 [ DOI: 10.1109/AVSS.2015.7301727 http://dx.doi.org/10.1109/AVSS.2015.7301727 ]
Bochkovskiy A, Wang C Y and Liao H Y M. 2020. YOLOv4: optimal speed and accuracy of object detection [EB/OL]. [2020-09-25] . https://arxiv.org/pdf/2004.10934.pdf https://arxiv.org/pdf/2004.10934.pdf
Bousetouane F and Morris B. 2015. Off-the-shelf CNN features for fine-grained classification of vessels in a maritime environment//The 11th International Symposium on Visual Computing (ISVC). Las Vegas, USA: Springer: 379-388 [ DOI: 10.1007/978-3-319-27863-6_35 http://dx.doi.org/10.1007/978-3-319-27863-6_35 ]
Bousetouane F and Morris B. 2016. Fast CNN surveillance pipeline for fine-grained vessel classification and detection in maritime scenarios//Proceedings of the 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Colorado Springs, USA: IEEE: 242-248 [ DOI: 10.1109/AVSS.2016.7738076 http://dx.doi.org/10.1109/AVSS.2016.7738076 ]
Bovcon B, Mandeljc R, Perš J and Kristan M. 2018. Stereo obstacle detection for unmanned surface vehicles by IMU-assisted semantic segmentation. Robotics and Autonomous Systems, 104: 1-13 [DOI: 10.1016/j.robot.2018.02.017]
Cane T and Ferryman J. 2018. Evaluating deep semantic segmentation networks for object detection in maritime surveillance//Proceedings of the 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Auckland, New Zealand: IEEE: 1-6 [ DOI: 10.1109/AVSS.2018.8639077 http://dx.doi.org/10.1109/AVSS.2018.8639077 ]
Chen K, Wang J Q, Pang J M, Cao Y H, Xiong Y, Li X X, Sun S Y, Feng W S, Liu Z W, Xu J R, Zhang Z, Cheng D Z, Zhu C C, Cheng T H, Zhao Q J, Li B Y, Lu X, Zhu R, Wu Y, Dai J F, Wang J D, Shi J P, Ouyang W L, Loy C C and Lin D H. 2019. Mmdetection: open mmlab detection toolbox and benchmark [EB/OL]. [2020-09-25] . https://arxiv.org/pdf/1906.07155.pdf https://arxiv.org/pdf/1906.07155.pdf
Chen Y H, Li W, Sakaridis C, Dai D X and Van Gool L. 2018a. Domain adaptive faster R-CNN for object detection in the wild//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, USA: IEEE: 3339-3348 [ DOI: 10.1109/CVPR.2018.00352 http://dx.doi.org/10.1109/CVPR.2018.00352 ]
Chen Z H, Yang J X and Kang Z. 2018b. Moving ship detection algorithm based on gaussian mixture model//Proceedings of the 3rd International Conference on Modelling, Simulation and Applied Mathematics (MSAM 2018). Shanghai, China: Atlantis Press: 197-201 [ DOI: 10.2991/msam-18.2018.42 http://dx.doi.org/10.2991/msam-18.2018.42 ]
Cheng B W, Xiao B, Wang J D, Shi H H, Huang T S and Zhang L. 2020. Bottom-up higher-resolution networks for multi-person pose estimation [EB/OL]. [2020-09-25] . https://arxiv.org/pdf/1908.10357.pdf https://arxiv.org/pdf/1908.10357.pdf
Cruz G and Bernardino A. 2016. Aerial detection in maritime scenarios using convolutional neural networks//Proceedings of the 17th International Conference on Advanced Concepts for Intelligent Vision Systems (ACIVS). Lecce, Italy: Springer, 373-384 [ DOI: 10.1007/978-3-319-48680-2_33 http://dx.doi.org/10.1007/978-3-319-48680-2_33 ]
Everingham M, Eslami S M A, Van Gool L, Williams C K I, Winn J and Zisserman A. 2015. The pascal visual object classes challenge: a retrospective. International Journal of Computer Vision, 111(1): 98-136 [DOI: 10.1007/s11263-014-0733-5]
Everingham M, Van Gool L, Williams C K I, Winn J and Zisserman A. 2010. The pascal visual object classes (VOC) challenge. International Journal of Computer Vision, 88(2): 303-338 [DOI: 10.1007/s11263-009-0275-4]
Fan H X and Chen L K. 2019. Ship target detection algorithm based on improved deep learning//Proceedings of the 4th IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). Chengdu, China: IEEE: 286-290 [ DOI: 10.1109/IAEAC47372.2019.8997993 http://dx.doi.org/10.1109/IAEAC47372.2019.8997993 ]
Fefilatyev S. 2012. Algorithms for Visual Maritime Surveillance with Rapidly Moving Camera. Tampa: University of South Florida, USA: 28-44
Fefilatyev S, Goldgof D, Shreve M and Lembke C. 2012. Detection and tracking of ships in open sea with rapidly moving buoy-mounted camera system. Ocean Engineering, 54: 1-12 [DOI: 10.1016/j.oceaneng.2012.06.028]
Fefilatyev S, Smarodzinava V, Hall L O and Goldgof D B. 2006. Horizon detection using machine learning techniques//Proceedings of the 5th International Conference on Machine Learning and Applications (ICMLA'06). Orlando, USA: IEEE: 17-21 [ DOI: 10.1109/ICMLA.2006.25 http://dx.doi.org/10.1109/ICMLA.2006.25 ]
Frid-Adar M, Klang E, Amitai M, Goldberger J and Greenspan H. 2018. Synthetic data augmentation using GAN for improved liver lesion classification//The 15th IEEE International Symposium on Biomedical Imaging (ISBI 2018). Washington, USA: IEEE: 289-293 [ DOI: 10.1109/ISBI.2018.8363576 http://dx.doi.org/10.1109/ISBI.2018.8363576 ]
Fu C Y, Liu W, Ranga A, Tyagi A and Berg A C. 2017. DSSD: deconvolutional single shot detector [EB/OL]. [2020-09-25] . https://arxiv.org/pdf/1701.06659.pdf https://arxiv.org/pdf/1701.06659.pdf
Ganin Y and Lempitsky V. 2014. Unsupervised domain adaptation by backpropagation [EB/OL]. [2020-09-25] . https://arxiv.org/pdf/1409.7495.pdf https://arxiv.org/pdf/1409.7495.pdf
Girshick R, Donahue J, Darrell T and Malik J. 2014. Rich feature hierarchies for accurate object detection and semantic segmentation//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, USA: IEEE: 580-587 [ DOI: 10.1109/CVPR.2014.81 http://dx.doi.org/10.1109/CVPR.2014.81 ]
Girshick R, Radosavovic I, Gkioxari G, Dollár P and He K M. 2020. Detectron [CP/OL]. [2020-09-22] . https://github.com/facebookresearch/detectron https://github.com/facebookresearch/detectron
Howard A, Sandler M, Chen B, Wang W J, Chen L C, Tan M X, Chu G, Vasudevan V, Zhu Y K, Pang R M, Adam H and Le Q. 2019. Searching for MobileNetV3//Proceedings of 2019 IEEE International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE: 1314-1324 [ DOI: 10.1109/ICCV.2019.00140 http://dx.doi.org/10.1109/ICCV.2019.00140 ]
Howard A G, Zhu M L, Chen B, Kalenichenko D, Wang W J, Weyand T, Andreetto M and Adam H. 2017. Mobilenets: efficient convolutional neural networks for mobile vision applications [EB/OL]. [2020-09-25] . https://arxiv.org/pdf/1704.04861.pdf https://arxiv.org/pdf/1704.04861.pdf
Jiang W T, Zhang C, Zhang S C and Liu W J. 2019. Multiscale feature map fusion algorithm for target detection. Journal of Image and Graphics, 24(11): 1918-1931
姜文涛, 张驰, 张晟翀, 刘万军. 2019. 多尺度特征图融合的目标检测. 中国图象图形学报, 24(11): 1918-1931) [DOI: 10.11834/jig.190021]
Kang M, Ji K F, Leng X G and Lin Z. 2017. Contextual region-based convolutional neural network with multilayer fusion for SAR ship detection. Remote Sensing, 9(8): #860 [DOI: 10.3390/rs9080860]
Katayama T, Song T, Shimamoto T and Jiang X T. 2019. GAN-based color correction for underwater object detection//Proceedings of OCEANS 2019 MTS/IEEE SEATTLE. Seattle, USA: IEEE: 1-4 [ DOI: 10.23919/OCEANS40490.2019.8962561 http://dx.doi.org/10.23919/OCEANS40490.2019.8962561 ]
Katsaggelos A K, Lay K T and Galatsanos N P. 1993. A general framework for frequency domain multi-channel signal processing. IEEE Transactions on Image Processing, 2(3): 417-420 [DOI: 10.1109/83.236528]
Kristan M, PeršJ, SuličV and KovačičS. 2014. A graphical model for rapid obstacle image-map estimation from unmanned surface vehicles//Proceedings of the 12th Asian Conference on Computer Vision (ACCV). Singapore, Singapore: Springer: 391-406 [ DOI: 10.1007/978-3-319-16808-1_27 http://dx.doi.org/10.1007/978-3-319-16808-1_27 ]
Kristan M, Sulić Kenk V, Kovačič S and Perš J. 2016. Fast image-based obstacle detection from unmanned surface vehicles. IEEE Transactions on Cybernetics, 46(3): 641-654 [DOI: 10.1109/TCYB.2015.2412251]
Lin T Y, Dollár P, Girshick R, He K M, Hariharan B and Belongie S. 2017. Feature pyramid networks for object detection//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE: 936-944 [ DOI: 10.1109/CVPR.2017.106 http://dx.doi.org/10.1109/CVPR.2017.106 ]
Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C Y and Berg A C. 2016. SSD: single shot MultiBox detector//Proceedings of the 14th European Conference on Computer Vision (ECCV). Amsterdam, the Netherlands: Springer: 21-37 [ DOI: 10.1007/978-3-319-46448-0_2 http://dx.doi.org/10.1007/978-3-319-46448-0_2 ]
Mikołajczyk A and Grochowski M. 2018. Data augmentation for improving deep learning in image classification problem//Proceedings of 2018 International Interdisciplinary PhD Workshop (IIPhDW).Świnoujście, Poland: IEEE: 117-122 [ DOI: 10.1109/IIPHDW.2018.8388338 http://dx.doi.org/10.1109/IIPHDW.2018.8388338 ]
Moosbauer S, König D, Jäkel J and Teutsch M. 2019. A benchmark for deep learning based object detection in maritime environments//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Long Beach, USA: IEEE: 916-925 [ DOI: 10.1109/CVPRW.2019.00121 http://dx.doi.org/10.1109/CVPRW.2019.00121 ]
Morris B, Aha D W, Auslander B and Gupta K. 2012. Learning and leveraging context for maritime threat analysis: vessel classification using Exemplar-SVM. ADA574666. Naval Research Lab Washington DC Navy Center for Applied Research in Artificial Intelligence
Patino L,Cane T, Vallee A and Ferryman J. 2016. PETS 2016: dataset and challenge//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Las Vegas, USA: IEEE: 1240-1247 [ DOI: 10.1109/CVPRW.2016.157 http://dx.doi.org/10.1109/CVPRW.2016.157 ]
Prasad D K, Dong H X, Rajan D and Quek C. 2020. Are object detection assessment criteria ready for maritime computer vision? IEEE Transactions on Intelligent Transportation Systems, 21(12): 5295-5304 [DOI: 10.1109/TITS.2019.2954464]
Prasad D K, Prasath C K, Rajan D, Rachmawati L, Rajabaly E and Quek C. 2016a. Challenges in video based object detection in maritime scenario using computer vision [EB/OL]. [2020-09-25] . https://arxiv.org/pdf/1608.01079.pdf https://arxiv.org/pdf/1608.01079.pdf
Prasad D K, Rajan D, Prasath C K, Rachmawati L, Rajabally E and Quek C. 2016b. MSCM-LiFe: multi-scale cross modal linear feature for horizon detection in maritime images//Proceedings of 2016 IEEE Region 10 Conference (TENCON). Singapore, Singapore: IEEE: 1366-1370 [ DOI: 10.1109/TENCON.2016.7848237 http://dx.doi.org/10.1109/TENCON.2016.7848237 ]
Prasad D K, Rajan D, Rachmawati L, Rajabally E and Quek C. 2017. Video processing from electro-optical sensors for object detection and tracking in a maritime environment: a survey. IEEE Transactions on Intelligent Transportation Systems, 18(8): 1993-2016 [DOI: 10.1109/TITS.2016.2634580]
Ren S Q, He K M, Girshick R and Sun J. 2015. Faster R-CNN: towards real-time object detection with region proposal networks//Proceedings of the 28th International Conference on Neural Information Processing Systems (NIPS). Montreal, Canada: MIT Press: 91-99
Ribeiro R, Cruz G, Matos J and Bernardino A. 2019. A data set for airborne maritime surveillance environments. IEEE Transactions on Circuits and Systems for Video Technology, 29(9): 2720-2732 [DOI: 10.1109/TCSVT.2017.2775524]
Sandler M, Howard A, Zhu M L, Zhmoginov A and Chen L C. 2018. MobileNetV2: inverted residuals and linear bottlenecks//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, USA: IEEE: 4510-4520 [ DOI: 10.1109/CVPR.2018.00474 http://dx.doi.org/10.1109/CVPR.2018.00474 ]
Schöller F E T, Plenge-Feidenhans'l M K, Stets J D and Blanke M. 2019. Assessing deep-learning methods for object detection at sea from LWIR images. IFAC-PapersOnLine, 52(21): 64-71 [DOI: 10.1016/j.ifacol.2019.12.284]
Shao Z F, Wang L G, Wang Z Y, Du W and Wu W J. 2020. Saliency-aware convolution neural network for ship detection in surveillance video. IEEE Transactions on Circuits and Systems for Video Technology, 30(3): 781-794 [DOI: 10.1109/TCSVT.2019.2897980]
Shao Z F, Wu W J, Wang Z Y, Du W and Li C Y. 2018. SeaShips: a large-scale precisely annotated dataset for ship detection. IEEE Transactions on Multimedia, 20(10): 2593-2604 [DOI: 10.1109/TMM.2018.2865686]
Shen M Y, Yu P F, Wang R G, Yang J and Xue L X. 2019. Image super-resolution reconstruction via deep network based on multi-staged fusion. Journal of Image and Graphics, 24(8): 1258-1269
沈明玉, 俞鹏飞, 汪荣贵, 杨娟, 薛丽霞. 2019. 多阶段融合网络的图像超分辨率重建. 中国图象图形学报, 24(8): 1258-1269) [DOI: 10.11834/jig.180619]
Stark H and Oskoui P. 1989. High-resolution image recovery from image-plane arrays, using convex projections. Journal of the Optical Society of America A, 6(11): 1715-1726 [DOI: 10.1364/JOSAA.6.001715]
Stiefelhagen R, Bernardin K, Bowers R, Garofolo J, Mostefa D and Soundararajan P. 2007. The CLEAR 2006 evaluation//Proceedings of the 1st International Evaluation Workshop on Classification of Events, Activities and Relationships (CLEAR). Southampton, UK: Springer: 1-44 [ DOI: 10.1007/978-3-540-69568-4_1 http://dx.doi.org/10.1007/978-3-540-69568-4_1 ]
Su H, Zhou J and Zhang Z H. 2013. Survey of super-resolution image reconstructionmethods. Acta Automatica Sinica, 39(8): 1202-1213
苏衡, 周杰, 张志浩. 2013. 超分辨率图像重建方法综述. 自动化学报, 39(8): 1202-1213) [DOI: 10.3724/SP.J.1004.2013.01202]
Sun K, Zhao Y, Jiang B R, Cheng T H, Xiao B, Liu D, Mu Y D, Wang X G, Liu W Y and Wang J D. 2019. High-resolution representations for labeling pixels and regions [EB/OL]. [2020-09-25] . https://arxiv.org/pdf/1904.04514.pdf https://arxiv.org/pdf/1904.04514.pdf
Wang B, Dong L L, Zhao M and Xu W H. 2017. Fast infrared maritime target detection: binarization via histogram curve transformation. Infrared Physics and Technology, 83: 32-44 [DOI: 10.1016/j.infrared.2017.03.009]
Westall P, Ford J J, O′Shea P and Hrabar S. 2008. Evaluation of maritime vision techniques for aerial search of humans in maritime environments//Proceedings of 2008 Digital Image Computing: Techniques and Applications. Canberra, Australia: IEEE: 176-183 [ DOI: 10.1109/DICTA.2008.89 http://dx.doi.org/10.1109/DICTA.2008.89 ]
Ye Y C, Jiang X M, Pan G F and Jiang W. 2015. Submarine Fiber Optic Cable Engineering. Beijing: China Ocean Press: 197-198
叶银灿, 姜新民, 潘国富, 江伟. 2015. 海底光缆工程. 北京: 海洋出版社: 197-198
Zhang H and Wang N Y. 2017. On the stability of video detection and tracking [EB/OL]. [2020-09-25] . https://arxiv.org/pdf/1611.06467.pdf https://arxiv.org/pdf/1611.06467.pdf
Zhang X H, Yao L B, Lyu Y F, Jian T, Zhao Z W and Zang J. 2020. Data-adaptive single-shot ship detector with a bidirectional feature fusion module for SAR images. Journal of Image and Graphics, 25(9): 1943-1952
张筱晗, 姚力波, 吕亚飞, 简涛, 赵志伟, 藏洁. 2020. 双向特征融合的数据自适应SAR图像舰船目标检测模型. 中国图象图形学报, 25(9): 1943-1952) [DOI: 10.11834/jig.190558]
Zhang Y, Li Q Z and Zang F N. 2017. Ship detection for visual maritime surveillance from non-stationary platforms. Ocean Engineering, 141: 53-63 [DOI: 10.1016/j.oceaneng.2017.06.022]
Zhou X Y, Wang D Q and Krähenbühl P. 2019. Objects as points [EB/OL]. [2020-09-24] . https://arxiv.org/pdf/1904.07850.pdf https://arxiv.org/pdf/1904.07850.pdf
Zou J J, Yuan W and Yu M H. 2019. Maritime target detection of intelligent ship based on faster R-CNN//Proceedings of 2019 Chinese Automation Congress (CAC). Hangzhou, China: IEEE: 4113-4117 [ DOI: 10.1109/CAC48633.2019.8996260 http://dx.doi.org/10.1109/CAC48633.2019.8996260 ]
相关作者
相关机构
京公网安备11010802024621