医学图像深度学习技术: 从卷积到图卷积的发展
Deep learning-based medical images analysis evolved from convolution to graph convolution
- 2021年26卷第9期 页码:2078-2093
纸质出版日期: 2021-09-16 ,
录用日期: 2021-06-02
DOI: 10.11834/jig.200666
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2021-09-16 ,
录用日期: 2021-06-02
移动端阅览
唐朝生, 胡超超, 孙君顶, 司马海峰. 医学图像深度学习技术: 从卷积到图卷积的发展[J]. 中国图象图形学报, 2021,26(9):2078-2093.
Chaosheng Tang, Chaochao Hu, Junding Sun, Haifeng Sima. Deep learning-based medical images analysis evolved from convolution to graph convolution[J]. Journal of Image and Graphics, 2021,26(9):2078-2093.
以卷积神经网络为代表的深度学习技术推动神经网络在医学图像研究领域不断实现新突破。然而,平移不变性等理论假设限制了卷积神经网络在非欧氏空间数据中的表达能力,是医学图像深度学习技术亟待突破的瓶颈。图卷积技术不仅能够解决非欧氏空间数据的拓扑建模难题,还实现了空间特征提取,是深度学习技术全新的研究方向。本文对图卷积网络在医学图像领域的相关理论及其应用进行综述,旨在系统归纳和全面总结医学图像领域最新的图卷积理论、方法和实践,包括图结构视角下医学图像的专业采集、数据结构的剪枝转换以及特征聚类重构方法;图卷积网络的理论溯源,重要的网络架构和发展脉络;图卷积网络的优化方向和衍生出的跳跃连接、inception、图注意力等重要机制;图卷积网络在医学图像分割、疾病检测和图像重建等方面的实践应用。最后,提出了图卷积网络在医学图像分析领域仍亟待突破的瓶颈问题:1)多模态医学图像学习中,异构图的构建与学习任务的优化;2)特征重构和池化过程中,如何通过构图算法设计与神经架构搜索算法结合,以实现最优图结构的可学习过程转换;3)高质量图结构医学标注数据的大规模低成本生成与生成对抗网络的算法设计。随着人工智能技术的不断发展和医学影像规模的不断扩大,以图卷积为代表的深度学习方法必将在医疗辅助诊断领域取得更大的突破。
The convolutional neural networks (CNN) have been facilitated to develop deep learning-based medical image sustainable research. The translation invariance capability has constrained the expression of CNN in the context of non-Euclidean spatial data. In order to realize deep learning-based spatial feature extraction
graph convolution has resolved the topology modeling issue based on non-Euclidean spatial data. The latest theories and applications of graph convolutional networks (GCN) for medical image analysis have been reviewed. This research has been divided into four aspects as follows: 1) Data structure transformation of medical images based on graph-structure; 2) Theoretical development and network architecture of GCN; 3) The optimized and derivative of graph convolution mechanism; 4) GCN implementation in medical image segmentation
disease detection
and image reconstruction. First
graph-structure-based medical images transformation has been reviewed in the context of graph data acquisition
transformation
and reconstruction. The graph-structure-based medical data have been acquired via the professional medical equipment
the sparse pruning algorithm
or the rebuilt graph-structure using the K-nearest neighbor (KNN) algorithm. The graph-structure reconstruction algorithm based on the medical image features has performed better than the graph-structure conversion algorithm based on the medical image data. Next
the critical architecture of the GCN
including the graph convolutional layer
the graph regularization layer
the graph pooling layer
and the graph readout layer
has been summarized. The graph-structural nodes or edges have been updated via the graph convolution layer. The generalization of GCN has been upgraded via the graph regularization layer. The number of calculation parameters has been reduced via the graph pooling layer. The representation of the graph has been generated via the graph readout layer. Graph convolution has been categorized into two methods as mentioned below: a) The spectrum-based graph convolution operation has been implemented via the theory of graph spectrum; b) The spatial domain-based graph convolution operation has been defined via the connectivity of each node. The spectrum-based graph convolution has relied on the eigen-decomposition of the Laplace matrix with the defects of high time complexity
poor portability
and narrow application. The convolution can be optimized by Chebyshev Inequality analysis. The graph pooling layer has effectively reduced parameter size. The graph regularization layer can facilitate the generalization of the model and alleviate the over-fitting and over-smoothing issues. The different structural features
node features
and edge features have been extracted based on the graph convolutional layer. All features need to be aggregated to complete the classification (note: this operation is called the readout operation
and its function is similar to the fully connected layer of CNN). Third
the development and derivation mechanism of GCN optimizations have been summarized. For instance
the jump connection mechanism of deepGCN has alleviated the over-smooth issue. The outputs of multiple GCN based on inception architecture can be integrated to improve the representation ability of the model. The graph attention mechanism has aggregated the differentiated information of the GCN nodes. The adjacency matrix reconstruction has been critically optimized to achieve qualified GCN model performance via learning the hidden structure of the unidentified graph adjacency matrix. Fourth
the main application of GCN for medical image analysis has been interpreted. The general graph-structure construct algorithm for GCN application to medical image segmentation has taken the region of interest (ROI) as the node and the existence of connection in the ROI as the edge. For some unique imaging data (such as brain voxel data and cardiac coronary artery surface grid data)
the KNN algorithm has been used to convert them into a graph-structure. The improvement of model architecture has changed from the simple stack of CNN and GCN to the complex combination of various models. The previous medical images application of GCN in disease detection has mainly focused on brain images. Disease detection has been accomplished by using GCN based on the various relationships between objects. Current research on disease detection has mainly divided into three aspects: 1) various CNN models have been used to extract the features based on the original medical images; 2) the KNN algorithm or graph attention algorithm has been used for feature reconstruction; 3) the potential relationship between features is mined by graph convolution for feature classification. In addition
GCN have been used for brain magnetic resonance imaging (MRI) reconstruction
liver image reconstruction
heart image reconstruction
and other diagnoses. In a word
GCN have effectively mined the generalized topological structure in image data on the aspects of medical image segmentation
disease detection
and image reconstruction. The integrated deep learning architecture
which uses pre-trained CNN as feature extractor and GCN as the classifier
has solved the missing issues of medical training samples in a graph structure and significantly improved the performance of deep learning technology in medical image analysis.
医学图像深度学习图表示学习图神经网络(GNN)图卷积网络(GCN)
medical imagedeep learninggraph representation learninggraph neural network(GNN)graph convolution network(GCN)
Abu-El-Haija S, Kapoor A, Perozzi B and Lee J. 2020. N-GCN: multi-scale graph convolution for semi-supervised node classification//Proceedings of the 35th Uncertainty in Artificial Intelligence Conference. Tel Aviv, Israel: PMLR 115: 841-851
Arya D, Olij R, Gupta D K, El Gazzar A, van Wingen G, Worring M and Thomas R M. 2020. Fusing structural and functional MRIs using graph convolutional networks for autism classification//Proceedings of the 3rd Conference on Medical Imaging with Deep Learning. Montreal, Canada: PMLR 121: 44-61
Bacciu D, Errica F and Micheli A. 2018. Contextual graph Markov model: a deep and generative approach to graph processing//Proceedings of the 35th International Conference on Machine Learning. Stockholm, Sweden: PMLR 80: 294-303
Bruna J, Zaremba W, Szlam A and LeCun Y. 2014. Spectral networks and deep locally connected networks on graphs[EB/OL]. [2021-01-08].https://arxiv.org/pdf/1312.6203.pdfhttps://arxiv.org/pdf/1312.6203.pdf
Chen S H, Sandryhaila A, Moura J M F and Kovačević J. 2015. Signal recovery on graphs: variation minimization. IEEE Transactions on Signal Processing, 63(17): 4609-4624[DOI: 10.1109/TSP.2015.2441042]
Chiang W L, Liu X Q, Si S, Li Y, Bengio S and Hsieh C J. 2019. Cluster-GCN: an efficient algorithm for training deep and large graph convolutional networks//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Anch orage, USA: ACM: 257-266[DOI: 10.1145/3292500.3330925http://dx.doi.org/10.1145/3292500.3330925]
Defferrard M, Bresson X and Vandergheynst P. 2016. Convolutional neural networks on graphs with fast localized spectral filtering//Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc. : 3844-3852[DOI: 10.5555/3157382.3157527http://dx.doi.org/10.5555/3157382.3157527]
Dhamala J, Ghimire S, Sapp J L, Horáček B M and Wang L W. 2019. Bayesian optimization on large graphs via a graph convolutional generative model: application in cardiac model personalization//Proceedings of the 22nd International Conference on Medical Image Computing and Computer Assisted Intervention. Shenzhen, China: Springer: 458-467[DOI: 10.1007/978-3-030-32245-8_51http://dx.doi.org/10.1007/978-3-030-32245-8_51]
Dhillon I S, Guan Y Q and Kulis B. 2007. Weighted graph cuts without eigenvectors a multilevel approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(11): 1944-1957[DOI: 10.1109/TPAMI.2007.1115]
Du H, Feng J S and Feng M L. 2019. Zoom in to where it matters: a hierarchical graph based model for mammogram analysis[EB/OL]. [2021-01-08].https://arxiv.org/pdf/1912.07517.pdfhttps://arxiv.org/pdf/1912.07517.pdf
Frasca F, Rossi E, Eynard D, Chamberlain B, Bronstein M M and Monti F. 2020. SIGN: scalable inception graph neural networks[EB/OL]. [2021-01-08].https://arxiv.org/pdf/2004.11198v3.pdfhttps://arxiv.org/pdf/2004.11198v3.pdf
Gilmer J, Schoenholz S S, Riley P F, Vinyals O and Dahl G E. 2017. Neural message passing for quantum chemistry//Proceedings of the 34th International Conference on Machine Learning. Sydney, Australia: JMLR. org: 1263-1272[DOI: 10.5555/3305381.3305512http://dx.doi.org/10.5555/3305381.3305512]
Gopinath K, Desrosiers C and Lombaert H. 2019. Graph convolutions on spectral embeddings for cortical surface parcellation. Medical Image Analysis, 54: 297-305[DOI: 10.1016/j.media.2019.03.012]
Gupta D and Anand R S. 2017. A hybrid edge-based segmentation approach for ultrasound medical images. Biomedical Signal Processing and Control, 31: 116-126[DOI: 10.1016/j.bspc.2016.06.012]
Hamilton W L, Ying R and Leskovec J. 2017. Inductive representation learning on large graphs//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: Curran Associates Inc. : 1025-1035[DOI: 10.5555/3294771.3294869http://dx.doi.org/10.5555/3294771.3294869]
Han S S, Kim M S, Lim W, Park G H, Park I and Chang S E. 2018. Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm. Journal of Investigative Dermatology, 138(7): 1529-1538[DOI: 10.1016/j.jid.2018.01.028]
Hasanzadeh A, Hajiramezanali E, Boluki S, Zhou M Y, Duffield N, Narayanan K and Qian X N. 2020. Bayesian graph neural networks with adaptive connection sampling[EB/OL]. [2021-01-08].https://arxiv.org/pdf/2006.04064.pdfhttps://arxiv.org/pdf/2006.04064.pdf
Hong J, Cheng H, Zhang Y D and Liu J. 2019a. Detecting cerebral microbleeds with transfer learning. Machine Vision and Applications, 30(7/8): 1123-1133[DOI: 10.1007/s00138-019-01029-5]
Hong Y, Chen G, Yap P T and Shen D G. 2019b. Reconstructing high-quality diffusion MRI data from orthogonal slice-undersampled data using graph convolutional neural networks//Proceedings of the 22nd International Conference on Medical Image Computing and Computer Assisted Intervention. Shenzhen, China: Springer: 529-537[DOI: 10.1007/978-3-030-32248-9_59http://dx.doi.org/10.1007/978-3-030-32248-9_59]
Huang W B, Rong Y, Xu T Y, Sun F C and Huang J Z.2021. Tackling over-smoothing for general graph convolutional networks[EB/OL]. [2021-01-08].https://arxiv.org/pdf/2008.09864.pdfhttps://arxiv.org/pdf/2008.09864.pdf
Huang Y X and Chung A C S. 2020. Semi-supervised multimodality learning with graph convolutional neural networks for disease diagnosis//Proceedings of 2020 IEEE International Conference on Image Processing (ICIP). Abu Dhabi, United Arab Emirates: IEEE: 2451-2455[DOI: 10.1109/ICIP40778.2020.9191172http://dx.doi.org/10.1109/ICIP40778.2020.9191172]
Jiang H, Cao P, Xu M Y, Yang J Z and Zaiane O. 2020. Hi-GCN: a hierarchical graph convolution network for graph embedding learning of brain network and brain disorders prediction. Computers in Biology and Medicine, 127: #104096[DOI: 10.1016/j.compbiomed.2020.104096]
Joshi A and Sharma K K. 2021. Hybrid topology of graph convolution and autoencoder deep network for multiple sclerosis lesion segmentation//Proceedings of 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). Coimbatore, India: IEEE: 1529-1534[DOI: 10.1109/ICAIS50930.2021.9395914http://dx.doi.org/10.1109/ICAIS50930.2021.9395914]
Karypis G and Kumar V. 1998. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing, 20(1): 359-392[DOI: 10.1137/S1064827595287997]
Kazi A, Shekarforoush S, Krishna S A, Burwinkel H, Vivar G, Kortüm K, Ahmadi S A, Albarqouni S and Navab N. 2019. InceptionGCN: receptive field aware graph convolutional network for disease prediction//Proceedings of the 26th International Conference on Information Processing in Medical Imaging. Hong Kong, China: Springer: 73-85[DOI: 10.1007/978-3-030-20351-1_6http://dx.doi.org/10.1007/978-3-030-20351-1_6]
Kipf T and Welling M. 2017. Semi-supervised classification with graph convolutional networks//Proceedings of the 5th International Conference on Learning Representations. Toulon, France: ICLR: 1-14
Lang Y K, Lian C F, Xiao D Q, Deng H, Yuan P, Gateno J, Shen S G F, Alfi D M, Yap P T, Xia J J and Shen D G. 2020. Automatic localization of landmarks in craniomaxillofacial CBCT images using a local attention-based graph convolution network//Proceedings of the 23rd International Conference on Medical Image Computing and Computer Assisted Intervention. Lima, Peru: Springer: 817-826[DOI: 10.1007/978-3-030-59719-1_79http://dx.doi.org/10.1007/978-3-030-59719-1_79]
Levie R, Monti F, Bresson X and Bronstein M M. 2019. CayleyNets: graph convolutional neural networks with complex rational spectral filters. IEEE Transactions on Signal Processing, 67(1): 97-109[DOI: 10.1109/tsp.2018.2879624]
Li G H, Muller M, Thabet A and Ghanem B. 2019. DeepGCNs: can GCNs go as deep as CNNs?//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE: 9266-9275[DOI: 10.1109/ICCV.2019.00936http://dx.doi.org/10.1109/ICCV.2019.00936]
Li Q M, Han Z C and Wu X M. 2018a. Deeper insights into graph convolutional networks for semi-supervised learning//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. New Orleans, Louisiana, USA: AAAI: 3538-3545
Li R Y, Wang S, Zhu F Y and Huang J Z. 2018b. Adaptive graph convolutional neural networks//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. New Orleans, Louisiana, USA: AAAI: 3546-3553
Li Y, Yu R, Shahabi C and Liu Y. 2018c. Diffusion convolutional recurrent neural network: data-driven traffic forecasting//Proceedings of the 6th International Conference on Learning Representations. Vancouver, BC, Canada: ICLR: 1-16
Ma Y, Wang S H, Aggarwal C C and Tang J L. 2019. Graph convolutional networks with eigenpooling//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Virtual Event, Singapore, Singapore: ACM: 723-731[DOI: 10.1145/3292500.3330982http://dx.doi.org/10.1145/3292500.3330982]
Mao C S, Yao L and Luo Y. 2019. ImageGCN: multi-relational image graph convolutional networks for disease identification with chest X-rays[EB/OL]. [2021-01-08].https://arxiv.org/pdf/1904.00325.pdfhttps://arxiv.org/pdf/1904.00325.pdf
Marzullo A, Kocevar G, Stamile C, Durand-Dubief F, Terracina G, Calimeri F and Sappey-Marinier D. 2019. Classification of multiple sclerosis clinical profiles via graph convolutional neural networks. Frontiers in Neuroscience, 13: #594[DOI: 10.3389/fnins.2019.00594]
Micheli A. 2009. Neural network for graphs: a contextual constructive approach. IEEE Transactions on Neural Networks, 20(3): 498-511[DOI: 10.1109/TNN.2008.2010350]
Ou Y L, Xue Y, Yuan Y, Xu T, Pisztora V, Li J and Huang X L. 2020. Semi-supervised cervical dysplasia classification with learnable graph convolutional network//Proceedings of the 17th IEEE International Symposium on Biomedical Imaging (ISBI). Iowa City, USA: IEEE: 1720-1724[DOI: 10.1109/ISBI45749.2020.9098507http://dx.doi.org/10.1109/ISBI45749.2020.9098507]
Parisot S, Ktena S I, Ferrante E, Lee M, Guerrero R, Glocker B and Rueckert D. 2018. Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer's disease. Medical Image Analysis, 48: 117-130[DOI: 10.1016/j.media.2018.06.001]
Rong Y, Huang W B, Xu T Y and Huang J Z. 2020. DropEdge: towards deep graph convolutional networks on node classification[EB/OL]. [2021-01-08].https://arxiv.org/pdf/1907.10903v4.pdfhttps://arxiv.org/pdf/1907.10903v4.pdf
Ronneberger O, Fischer P and Brox T. 2015. U-Net: convolutional networks for biomedical image segmentation//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Munich, Germany: Springer: 234-241[DOI: 10.1007/978-3-319-24574-4_28http://dx.doi.org/10.1007/978-3-319-24574-4_28]
Sandryhaila A and Moura J M F. 2013. Discrete signal processing on graphs. IEEE Transactions on Signal Processing, 61(7): 1644-1656[DOI: 10.1109/TSP.2013.2238935]
Scarselli F, Gori M, Tsoi A C, Hagenbuchner M and Monfardini G. 2009. The graph neural network model. IEEE Transactions on Neural Networks, 20(1): 61-80[DOI: 10.1109/TNN.2008.2005605]
Schlichtkrull M, Kipf T N, Bloem P, van den Berg R, Titov I and Welling M. 2018. Modeling relational data with graph convolutional networks//Proceedings of the 15th International Conference on The Semantic Web. Heraklion, Greece: Springer: 593-607[DOI: 10.1007/978-3-319-93417-4_38http://dx.doi.org/10.1007/978-3-319-93417-4_38]
Shin S Y, Lee S, Yun I D and Lee K M. 2019. Deep vessel segmentation by learning graphical connectivity. Medical Image Analysis, 58: #101556[DOI: 10.1016/j.media.2019.101556]
Shuman D I, Narang S K, Frossard P, Ortega A and Vandergheynst P. 2013. The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Processing Magazine, 30(3): 83-98[DOI: 10.1109/MSP.2012.2235192]
Song T A, Chowdhury S R, Yang F, Jacobs H, El Fakhri G, Li Q Z, Johnson K and Dutta J. 2019. Graph convolutional neural networks for Alzheimer's disease classification//The 16th IEEE International Symposium on Biomedical Imaging. Venice, Italy: IEEE: 414-417[DOI: 10.1109/ISBI.2019.8759531http://dx.doi.org/10.1109/ISBI.2019.8759531]
Song X G, Frangi A, Xiao X H, Cao J W, Wang T F and Lei B Y. 2020. Integrating similarity awareness and adaptive calibration in graph convolution network to predict disease//Proceedings of the 23rd International Conference on Medical Image Computing and Computer Assisted Intervention. Lima, Peru: Springer: 124-133[DOI: 10.1007/978-3-030-59728-3_13http://dx.doi.org/10.1007/978-3-030-59728-3_13]
Song X G, Zhou F, Frangi A F, Cao J W, Xiao X H, Lei Y, Wang T F and Lei B Y. 2021. Graph convolution network with similarity awareness and adaptive calibration for disease-induced deterioration prediction. Medical Image Analysis, 69: #101947[DOI: 10.1016/j.media.2020.101947]
Soulami K B, Saidi M N and Tamtaoui A. 2017. A CAD system for the detection of abnormalities in the mammograms using the metaheuristic algorithm particle swarm optimization (PSO)//El-Azouzi R, Menasche D S, Sabir E, De Pellegrini F, Benjillali M, eds. Advances in Ubiquitous Networking 2: Proceedings of the UNet'16. Singapore, Singapore: Springer: 505-517[DOI: 10.1007/978-981-10-1627-1_40http://dx.doi.org/10.1007/978-981-10-1627-1_40]
Srivastava N, Hinton G, Krizhevsky A, Sutskever I and Salakhutdinov R. 2014. Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1): 1929-1958[DOI: 10.5555/2627435.2670313]
Szegedy C, Liu W, Jia Y Q, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V and Rabinovich A. 2015. Going deeper with convolutions//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE: #7298594[DOI: 10.1109/CVPR.2015.7298594http://dx.doi.org/10.1109/CVPR.2015.7298594]
Tian Z Q, Li X J, Zheng Y Y, Chen Z, Shi Z, Liu L Z and Fei B W. 2020. Graph-convolutional-network-based interactive prostate segmentation in MR images. Medical physics, 47(9): 4164-4176[DOI: 10.1002/mp.14327]
Tong F, Nakao M, Wu S Q, Nakamura M and Matsuda T. 2020. X-ray2Shape: reconstruction of 3D liver shape from a single 2D projection image//Proceedings of Annual International Conference of 2020 IEEE Engineering in Medicine and Biology Society. Montreal, Canada: IEEE: 1608-1611[DOI: 10.1109/EMBC44109.2020.9176655http://dx.doi.org/10.1109/EMBC44109.2020.9176655]
Veličković P, Cucurull G, Casanova A, Romero A, Lio P and Bengio Y. 2018. Graph attention networks//Proceedings of the 6th International Conference on Learning Representations. Vancouver, Canada: ICLR: 1-12
Vinyals O, Bengio S and Kudlur M. 2016. Order matters: sequence to sequence for sets//Proceedings of the 4th International Conference on Learning Representations. San Juan, Puerto Rico, USA: ICLR
von Landesberger T, Basgier D and Becker M. 2016. Comparative local quality assessment of 3D medical image segmentations with focus on statistical shape model-based algorithms. IEEE Transactions on Visualization and Computer Graphics, 22(12): 2537-2549[DOI: 10.1109/TVCG.2015.2501813]
Wang S H, Govindaraj V V, Górriz J M, Zhang X and Zhang Y D. 2021. Covid-19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network. Information Fusion, 67: 208-229[DOI: 10.1016/j.inffus.2020.10.004]
Wolterink J M, Leiner T and Išgum I. 2019. Graph convolutional networks for coronary artery segmentation in cardiac CT angiography//Proceedings of the 1st International Workshop on Graph Learning in Medical Imaging. Shenzhen, China: Springer: 62-69[DOI: 10.1007/978-3-030-35817-4_8http://dx.doi.org/10.1007/978-3-030-35817-4_8]
Wu Z H, Pan S R, Chen F W, Long G D, Zhang C Q and Yu P S. 2021. A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems, 32(1): 4-24[DOI: 10.1109/TNNLS.2020.2978386]
Wu Z W, Zhao F Q, Xia J, Wang L, Lin W L, Gilmore J H, Li G and Shen D G. 2019. Intrinsic patch-based cortical anatomical parcellation using graph convolutional neural network on surface manifold//Proceedings of the 22nd International Conference on Medical Image Computing and Computer Assisted Intervention. Shenzhen, China: Springer: 492-500[DOI: 10.1007/978-3-030-32248-9_55http://dx.doi.org/10.1007/978-3-030-32248-9_55]
Xu K, Hu W H, Leskovec J and Jegelka S. 2019. How powerful are graph neural networks?[EB/OL]. [2021-01-08].https://arxiv.org/pdf/1810.00826v3.pdfhttps://arxiv.org/pdf/1810.00826v3.pdf
Xu K, Li C T, Tian Y L, Sonobe T, Kawarabayashi K I and Jegelka S. 2018. Representation learning on graphs with jumping knowledge networks//Proceedings of the 35th International Conference on Machine Learning. Stockholm, Sweden: PMLR 80: 5453-5462
Yan S J, Xiong Y J and Lin D H. 2018. Spatial temporal graph convolutional networks for skeleton-based action recognition//Proceedings of the AAAI Conference on 32nd Artificial Intelligence. New Orleans, Louisiana, USA: AAAI: 7444-7452
Yang B, Pan H W, Yu J Y, Han K and Wang Y N. 2019. Classification of medical images with synergic graph convolutional networks//Proceedings of the 35th International Conference on Data Engineering Workshops (ICDEW). Macao, China: IEEE: 253-258[DOI: 10.1109/ICDEW.2019.000-4http://dx.doi.org/10.1109/ICDEW.2019.000-4]
Yang C Q, Wang R J, Yao S C, Liu S Z and Abdelzaher T. 2020a. Revisiting oversmoothing in deep GCNs[EB/OL]. [2021-01-08].https://arxiv.org/pdf/2003.13663v5.pdfhttps://arxiv.org/pdf/2003.13663v5.pdf
Yang H, Zhen X J, Chi Y, Zhang L and Hua X S. 2020b. CPR-GCN: conditional partial-residual graph convolutional network in automated anatomical labeling of coronary arteries//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 3802-3810[DOI: 10.1109/CVPR42600.2020.00386http://dx.doi.org/10.1109/CVPR42600.2020.00386]
Yao D R, Sui J, Wang M L, Yang E K, Jiaerken Y, Luo N, Yap P T, Liu M X and Shen D G. 2021. A mutual multi-scale triplet graph convolutional network for classification of brain disorders using functional or structural connectivity. IEEE Transactions on Medical Imaging, 40(4): 1279-1289[DOI: 10.1109/TMI.2021.3051604]
Yao D R, Sui J, Yang E K, Yap P T, Shen D G and Liu M X. 2020a. Temporal-adaptive graph convolutional network for automated identification of major depressive disorder using resting-state fMRI//Proceedings of the 11th International Workshop on Machine Learning in Medical Imaging. Lima, Peru: Springer: 1-10[DOI: 10.1007/978-3-030-59861-7_1http://dx.doi.org/10.1007/978-3-030-59861-7_1]
Yao L L, Jiang P B, Xue Z, Zhan Y Q, Wu D J, Zhang L C, Wang Q, Shi F and Shen D G. 2020b. Graph convolutional network based point cloud for head and neck vessel labeling//Proceedings of the 11th International Workshop on Machine Learning in Medical Imaging. Lima, Peru: Springer: 474-483[DOI: 10.1007/978-3-030-59861-7_48http://dx.doi.org/10.1007/978-3-030-59861-7_48]
Ye H L, Wang D H, Li J M, Zhu S Z and Zhu C Y. 2019. Improving histopathological image segmentation and classification using graph convolution network//Proceedings of the 8th International Conference on Computing and Pattern Recognition. Beijing, China: ACM: 192-198[DOI: 10.1145/3373509.3373579http://dx.doi.org/10.1145/3373509.3373579]
You Y N, Chen T L, Wang Z Y and Shen Y. 2020. L2-GCN: layer-wise and learned efficient training of graph convolutional networks//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 2124-2132[DOI: 10.1109/CVPR42600.2020.00220http://dx.doi.org/10.1109/CVPR42600.2020.00220]
Yu S Z, Wang S Q, Xiao X H, Cao J W, Yue G H, Liu D D, Wang T F, Xu Y W and Lei B Y. 2020. Multi-scale enhanced graph convolutional network for early mildcognitive impairment detection//Proceedings of the 23rd International Conference on Medical Image Computing and Computer Assisted Intervention. Lima, Peru: Springer: 228-237[DOI: 10.1007/978-3-030-59728-3_23http://dx.doi.org/10.1007/978-3-030-59728-3_23]
Yu X, Wang S H and Zhang Y D. 2021. CGNet: a graph-knowledge embedded convolutional neural network for detection of pneumonia. Information Processing and Management, 58(1): #102411[DOI: 10.1016/j.ipm.2020.102411]
Zhai Z W, Staring M, Zhou X H, Xie Q X, Xiao X J, Bakker M E, Kroft L J, Lelieveldt B P F, Boon G J A M, Klok F A and Stoel B C. 2019. Linking convolutional neural networks with graph convolutional networks: application in pulmonary artery-vein separation//Proceedings of the 1st International Workshop on Graph Learning in Medical Imaging. Shenzhen, China: Springer: 36-43[DOI: 10.1007/978-3-030-35817-4_5http://dx.doi.org/10.1007/978-3-030-35817-4_5]
Zhan Y, Pan H W, Han Q L, Xie X Q, Zhang Z Q and Wu P. 2016. Medical image clustering method based on graph entropy. Journal of Chinese Computer Systems, 37(7): 1594-1599
战宇, 潘海为, 韩启龙, 谢晓芹, 张志强, 吴枰. 2016. 一种运用图熵的医学图像聚类方法. 小型微型计算机系统, 37(7): 1594-1599[DOI: 10.3969/j.issn.1000-1220.2016.07.044]
Zhang D H, Liu S Q, Chaganti S, Gibson E, Xu Z B, Grbic S, Cai W D and Comaniciu D. 2020. Graph attention network based pruning for reconstructing 3D liver vessel morphology from contrasted CT images[EB/OL]. [2021-05-13].https://arxiv.org/pdf/2003.07999.pdfhttps://arxiv.org/pdf/2003.07999.pdf
Zhang M H, Cui Z C, Neumann M and Chen Y X. 2018a. An end-to-end deep learning architecture for graph classification//Proceedings of the AAAI Conference on 32nd Artificial Intelligence. New Orleans, Louisiana, USA: AAAI: 4438-4445
Zhang X, Chou J Y and Wang F. 2018b. Integrative analysis of patient health records and neuroimages via memory-based graph convolutional network//Proceedings of 2018 IEEE International Conference on Data Mining (ICDM). Singapore, Singapore: IEEE: 767-776[DOI: 10.1109/ICDM.2018.00092http://dx.doi.org/10.1109/ICDM.2018.00092]
Zhang X, He L F, Chen K, Luo Y, Zhou J Y and Wang F. 2018c. Multi-view graph convolutional network and its applications on neuroimage analysis for Parkinson's disease//AMIA Annual Symposium Proceedings. San Francisco, USA: AMIA: 1147-1156
Zhang Y, Kong Y Y, Wu J S, Coatrieux G and Shu H Z. 2019. Brain tissue segmentation based ongraph convolutional networks//Proceedings of 2019 IEEE International Conference on Image Processing (ICIP). Taipei, China: IEEE: 1470-1474[DOI: 10.1109/ICIP.2019.8803033http://dx.doi.org/10.1109/ICIP.2019.8803033]
Zhao L X and Akoglu L. 2020. PairNorm: tackling oversmoothing in GNNs//Proceedings of the 8th International Conference on Learning Representations. Addis Ababa, Ethiopia: ICLR: 1-17
Zhou C. 2020. A hybrid approach for coronary artery anatomical labeling in cardiac CT angiography//Proceedings of the 4th International Conference on Artificial Intelligence Applications and Technologies (AIAAT 2020). Shenzhen, China: IOP Publishing: #012020[DOI: 10.1088/1742-6596/1642/1/012020http://dx.doi.org/10.1088/1742-6596/1642/1/012020]
Zhu Q K, Du B and Yan P K. 2019. Multi-hop convolutions on weighted graphs[EB/OL]. [2021-05-13].https://arxiv.org/pdf/1911.04978.pdfhttps://arxiv.org/pdf/1911.04978.pdf
相关作者
相关机构