显微光学模糊图像的景物深度提取及应用
Scene depth extraction and application of microscopic optical blur image
- 2022年27卷第2期 页码:461-474
纸质出版日期: 2022-02-16 ,
录用日期: 2021-01-16
DOI: 10.11834/jig.200560
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2022-02-16 ,
录用日期: 2021-01-16
移动端阅览
苗国超, 魏阳杰, 侯威翰. 显微光学模糊图像的景物深度提取及应用[J]. 中国图象图形学报, 2022,27(2):461-474.
Guochao Miao, Yangjie Wei, Weihan Hou. Scene depth extraction and application of microscopic optical blur image[J]. Journal of Image and Graphics, 2022,27(2):461-474.
目的
2
显微光学成像有景深小和易模糊等缺陷,很难根据几何光学中的点扩散函数准确评估图像的模糊程度,进而很难计算景物深度。同时,传统的使用边缘检测算子衡量图像模糊程度变化的方法缺少与景物深度之间的函数关系,影响深度计算的精度。为此,本文提出一种显微光学系统成像模糊程度与景物深度关系曲线的获取方法。
方法
2
从显微光学系统中的光学传递特性出发,建立光学传递函数中的光程差、高频能量参数和景物深度之间的数学关系,并通过归一化和曲线拟合得到显微光学系统的成像模糊程度与景物深度之间的解析函数。
结果
2
为了验证本文获取的图像模糊程度和景物深度之间的函数关系,首先使用纳米方形栅格的模糊图像进行深度计算,实验测得的深度平均误差为0.008 μm,即相对误差为0.8%,与通过清晰图像和模糊图像的逐个像素亮度值比较,根据最小二乘方法搜索两幅图像的亮度差最小时求得深度的方法相比,精度提高了约73%。然后基于深度测量结果进行模糊栅格图像的清晰重构,重构后的图像在平均梯度和拉普拉斯值两个方面都明显提高,且相对于传统基于高斯点扩散函数清晰重构方法,本文方法的重构精度更高,稳定性更强;最后通过多种不同形状和亮度特性的栅格模糊图像的深度计算,证明了本文的模糊程度—深度变化曲线对不同景物的通用性。
结论
2
本文建立的函数关系能够更加直观地反映系统参数对光学模糊成像过程的影响。使用高频能量参数表征图像的模糊特性,既可以准确测量图像模糊程度,也与景物深度具有直接的函数关系。固定光学系统参数后,建立的归一化系统成像模糊程度与景物深度之间的函数关系不会受到景物图像的纹理、亮度等特性差异的影响,鲁棒性强、更方便、更省时。
Objective
2
In micro-optical imaging
the depth-of-field is small
and the image easily becomes defocused. However
accurately evaluating the blur degree of the image according to the point spread function in geometric optics and then calculating the depth of the scene is difficult. Although the traditional method applies edge detection operators to measure the change of the image blur degree
these operators evaluate the blur degree of the image according to the change speed of the edge brightness
no direct mathematical relationship with the system parameters and the depth of the scene exists
and a mathematical model of the relationship between image blurriness
optical system parameters
and scene depth accurately cannot be established. In addition
the evaluation value of blurring degree is closely related to image features such as scene texture and brightness; hence
their robustness is poor. More importantly
in microscopic imaging systems
the effect of light diffraction and refraction is remarkable
and the optical system parameters on the imaging quality are complex and mutually coupled. Most of these evaluation methods are based solely on image characteristics to achieve fuzzy evaluation
without considering the parameters of the optical system
and accurately reflecting the overall characteristics of these systems is difficult. Therefore
studying the quantified and generalized relationship model between the degree of image blur
the depth of the scene
and the systematic parameters based on the transmission characteristics of light in optical imaging is necessary to restore scene depth information and reconstruct the focused images.
Method
2
A general defocused-depth model for optical microscopy systems is proposed in this paper. First
starting from the optical transfer characteristics in the microscopic optical system
the mathematical function relationship between the optical path difference in the optical transfer function and the depth of the scene is established
and the influence of the optical path difference on the optical transfer characteristics is analyzed
that is
the high-frequency response of the optical system is gradually attenuated as the optical path difference increases. According to the composition characteristics of optical imaging
the outline of an image is determined by low-frequency signals
the image details are determined by high-frequency signals
and the loss of image high-frequency signals means image blur. Then
the high-frequency energy parameters are introduced to describe the blur degree of the image. To obtain the high-frequency energy of the image
first
high-pass filtering is performed on the image to obtain a frequency-domain image that only contains the high-frequency information of the image. Then
the sum of the pixel values of the spatial image is calculated by using its inverse Fourier transform to obtain the high-frequency energy parameters of the image
and the mathematical function relationship between the high-frequency energy parameters and the depth of the scene is established through the optical transfer function. Finally
a general fuzzy depth model of the microscope optical system is obtained through normalization and curve fitting.
Result
2
To verify the defocused depth model of the optical system proposed in this paper
first
depth calculation is performed using the blurred image of the nano square grid. The average error of the depth measured in our experiment is 0.008 μm
and the relative error is 0.8%. Compared with the pixel-by-pixel brightness value comparison method based on the least squares principle
accuracy is improved by approximately 73%. Based on these measurement results
the focused image reconstruction of the blurred grid image is performed. The reconstructed image has a substantial improvement in average gradient and Laplacian value. Compared with the traditional clear reconstruction method based on Gaussian point spread function
the reconstruction accuracy of our method is higher
and the stability is stronger. Finally
the versatility of the blur degree-depth curve to different scenes in this paper is proven through the depth calculation of the striped grid blurred image and the focused image reconstruction.
Conclusion
2
The functional relationship established in this paper can more intuitively reflect the influence of system parameters on optical blur imaging. Using high-frequency energy parameters to characterize the blur characteristics of an image can only measure the degree of image blurring accurately and has a direct functional relationship with the depth of the scene. More importantly
with the fixed parameters of an optical system
the functional relationship established between the normalized system imaging blur degree and the scene depth in this paper is not affected by variation of image texture and brightness. Therefore
it is robust
convenient
and time saving in real applications.
光学显微系统模糊程度景物深度解析函数光学传递特性高频能量参数
optical microscopy systemblur degreescene depthanalytic functionoptical transmission characteristicshigh frequency energy parameter
Barretto R P J, Ko T H, Jung J C, Wang T J, Capps G, Waters A C, Ziv Y, Attardo A, Recht L and Schnitzer M J. 2011. Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy. Nature Medicine, 17(2): 223-228[DOI: 10.1038/nm.2292]
Dai W Z and Yang Y. 2019. Noise image edge detection based on improved Gauss-Laplace operator. Application Research of Computers, 36(8): 2544-2547, 2555
代文征, 杨勇. 2019. 基于改进高斯-拉普拉斯算子的噪声图像边缘检测方法. 计算机应用研究, 36(8): 2544-2547, 2555[DOI: 10.19734/j.issn.1001-3695.2018.02.0183]
Ghosh S, Yu C L, Ferraro D J, Sudha S, Pal S K, Schaefer W F, Gibson D T and Ramaswamy S. 2016. Blue protein with red fluorescence. Proceedings of the National Academy of Sciences of the United States of America, 113(41): 11513-11518[DOI: 10.1073/pnas.1525622113]
Herath S C B, Yue D, Hui S, Kim M C, Wang D A, Wang Q G, Van Vliet K J, Asada H and Chen P C Y. 2014. Quantification of magnetically induced changes in ECM local apparent stiffness. Biophysical Journal, 106(1): 332-341[DOI: 10.1016/j.bpj.2013.11.4459]
Hopkins H H. 1955. The frequency response of a defocused optical system. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 231(1184): 91-103[DOI: 10.1098/rspa.1955.0158]
Jeon D S, Baek S H, Yi S, Fu Q, Dun X, Heidrich W and Kim M H. 2019. Compact snapshot hyperspectral imaging with diffracted rotation. ACM Transactions on Graphics, 38(4): #117[DOI: 10.1145/3306346.3322946]
Liang R and Wei Y J. 2021. Adaptive distance measurement method with blur of B-spline wavelet function. Journal of Image and Graphics, 26(3): 503-515
梁锐, 魏阳杰. 2021. 自适应B样条小波函数模糊距离测量方法. 中国图象图形学报, 26(3): 503-515. [DOI: 10.11834/jig.190659]
Liu K, Yang J Y, Quan J and Cheng Y Q. 1994. Blur identification and restoration of images with out-of-focus blur. Acta Automatica Sinica, 20(1): 58-65
刘克, 杨静宇, 权军, 程永清. 1994. 离焦图象模糊辨识及复原方法研究. 自动化学报, 20(1): 58-65
Pentland A P. 1987. A new sense for depth of field. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(4): 523-531[DOI: 10.1109/TPAMI.1987.4767940]
Pronina V, Kokkinos F, Dylov D V and Lefkimmiatis S. 2020. Microscopy image restoration with deep wiener-Kolmogorov filters//Vedaldi A, Bischof H, Brox T and Frahm J M, eds. Computer Vision-ECCV 2020. Glasgow, UK: Springer: 185-201[DOI: 10.1007/978-3-030-58565-5_12http://dx.doi.org/10.1007/978-3-030-58565-5_12]
Rodriguez E A, Tran G N, Gross L A, Crisp J L, Shu X K, Lin J Y and Tsien R Y. 2016. A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein. Nature Methods, 13(9): 763-769[DOI: 10.1038/NMETH.3935]
Scandolo L, Lee S and Eisemann E. 2018. Quad-based Fourier transform for efficient diffraction synthesis. Computer Graphics Forum, 37(4): 167-176[DOI: 10.1111/CGF.13484]
Sheinin M, Reddy D N, O'Toole M and Narasimhan S G. 2020. Diffraction line imaging//Vedaldi A, Bischof H, Brox T and Frahm J M, eds. Computer Vision-ECCV 2020. Glasgow, UK: Springer: 1-16[DOI: 10.1007/978-3-030-58536-5_1http://dx.doi.org/10.1007/978-3-030-58536-5_1]
Stokseth P A. 1969. Properties of a defocused optical system. Journal of the Optical Society of America, 59(10): 1314-1321[DOI: 10.1364/JOSA.59.001314]
Subbarao M and Gurumoorthy N. 1988. Depth recovery from blurred edges//Proceedings of the Computer Society Conference on Computer Vision and Pattern Recognition. Ann Arbor, USA: IEEE: 498-503[DOI: 10.1109/CVPR.1988.196281http://dx.doi.org/10.1109/CVPR.1988.196281]
Subbarao M. 1989. Efficient depth recovery through inverse optics//Freeman H, ed. Machine Vision for Inspection and Measurement. Boston: Academic Press: 101-126
Sun M Z, Zhao X and Lu G Z. 2009. Depth measurement in the direction of optical axis based on defocused micro-manipulation system. Acta Physica Sinica, 58(9): 6248-6257
孙明竹, 赵新, 卢桂章. 2009. 基于离焦的微操作机器人系统光轴方向深度测量. 物理学报, 58(9): 6248-6257[DOI: 10.3321/j.issn:1000-3290.2009.09.058]
Tang S C and Wen C Y. 1998. Study on validation by comparing data from simulation and field tests. Journal of System Simulation, 10(4): 37-41
汤淑春, 文传源. 1998. 仿真结果与试验数据的一致性研究. 系统仿真学报, 10(4): 37-41
Wei X, Yang Q X and Gong Y H. 2018. Joint contour filtering. International Journal of Computer Vision, 126(11): 1245-1265[DOI: 10.1007/S11263-018-1091-5]
Wetzer E, Lindblad J, Sintorn I M, Hultenby K and Sladoje N. 2019. Towards automated multiscale imaging and analysis in TEM: glomerulus detection by fusion of CNN and LBP maps//Leal-TaixéL and Roth S, eds. Computer Vision-ECCV 2018 Workshops. Munich, Germany: Springer: 465-475[DOI: 10.1007/978-3-030-11024-6_36http://dx.doi.org/10.1007/978-3-030-11024-6_36]
Xie S N and Tu Z W. 2017. Holistically-nested edge detection. International Journal of Computer Vision, 125(1): 3-18[DOI: 10.1007/S11263-017-1004-Z]
Zeng M, Zhang J X, Chen S J, Wang X H and Zhao X. 2004. Estimation of depth from defocus for micromanipulation based on high frequency energy parameter Eh. Robot, 26(4): 351-356
曾明, 张建勋, 陈少杰, 王湘晖, 赵新. 2004. 基于高频能量参数Eh的微操作纵向深度估计. 机器人, 26(4): 351-356[DOI: 10.3321/j.issn:1002-0446.2004.04.013]
Zhang Y, Qu B C, Jia Z F and Huo K Y. 2014. Parameter estimation of point spread function for defocused image. Electronic Technology and Software Engineering, (14): #116
张颖, 曲博超, 贾志芳, 霍柯言. 2014. 散焦模糊图像点扩散函数参数估计. 电子技术与软件工程, (14): #116
Zheng C J, Li R and Chang H S. 2004. Restoration of defocus blurred digital image using Wiener filter in frequency domain. Laser Journal, 25(5): 57-58
郑楚君, 李蓉, 常鸿森. 2004. 离焦模糊数字图像的Wiener滤波频域复原. 激光杂志, 25(5): 57-58 [DOI: 10.3969/j.issn.0253-2743.2004.05.022]
Zheng Y and Sun X H. 2005. The improvement of Laplace operator in image edge detection. Journal of Shenyang Jianzhu University (Natural Science), 21(3): 268-271
郑莹, 孙燮华. 2005. 图像边缘检测Laplace算子的改进. 沈阳建筑大学学报(自然科学版), 21(3): 268-271 [DOI:10.3321/j.issn:1671-2021.2005.03.024]
相关文章
相关作者
相关机构