肝脏肿瘤CT图像深度学习分割方法综述
Review of deep learning segmentation methods for CT images of liver tumors
- 2020年25卷第10期 页码:2024-2046
收稿:2020-05-31,
修回:2020-7-1,
录用:2020-7-8,
纸质出版:2020-10-16
DOI: 10.11834/jig.200234
移动端阅览

浏览全部资源
扫码关注微信
收稿:2020-05-31,
修回:2020-7-1,
录用:2020-7-8,
纸质出版:2020-10-16
移动端阅览
肝脏肿瘤的精确分割是肝脏疾病诊断、手术计划和术后评估的重要步骤。计算机断层成像(computed tomography,CT)能够为肝脏肿瘤的诊断和治疗提供更为全面的信息,分担了医生繁重的阅片工作,更好地提高诊断的准确性。但是由于肝脏肿瘤的类型多样复杂,使得分割成为计算机辅助诊断的重难点问题。肝脏肿瘤CT图像的深度学习分割方法较传统的分割方法取得了明显的性能提升,并获得快速的发展。通过综述肝脏肿瘤图像分割领域的相关文献,本文介绍了肝脏肿瘤分割的常用数据库,总结了肝脏肿瘤CT图像的深度学习分割方法:全卷积网络(fully convolutional network,FCN)、U-Net网络和生成对抗网络(generative adversarial network,GAN)方法,重点给出了各类方法的基本思想、网络架构形式、改进方案以及优缺点等,并对这些方法在典型数据集上的性能表现进行了比较。最后,对肝脏肿瘤深度学习分割方法的未来研究趋势进行了展望。
Hepatocellular carcinoma is one of the most common malignant tumors of the digestive system in clinic. It ranks third after gastric cancer and lung cancer in the death ranking of malignant tumors. Computed tomography (CT) can well display the organs composed of soft tissue and show the lesions in the abdominal image. It has become a typical method for the diagnosis and treatment of liver diseases. It produces high-quality liver imaging that can provide comprehensive information for the diagnosis and treatment of liver tumors
alleviate the heavy workload of doctors
and have an important value for subsequent diagnosis and treatment. Segmentation of CT images of liver tumors is a crucial step in the diagnosis of liver cancer. In accordance with the maximum diameter
volume
and number of liver lesions
medical workers can give patients accurate diagnosis results and treatment plans conveniently and rapidly. However
the manual three-dimensional segmentation of liver tumors is time consuming and requires substantial work. Therefore
a method for automatically segmenting liver tumors is urgently needed. Many challenges occur in the segmentation of liver tumors. First
the CT image of a liver tumor shows the cross section of the human body
and the contrast of the liver and liver tumor tissue is inconsiderably different from that of the surrounding adjacent tissues (such as the stomach
pancreas
and heart). The segmentation by using grayscale differences is difficult. Second
the individual differences of patients result in diverse sizes and shapes of liver tumors. Third
CT images are susceptible to various external factors
such as noise
partial volume effects
and magnetic field bias. The interference of the shift makes the image blurry. Dealing with the effects of these factors in a timely manner is a great challenge for medical imaging researchers. Accurate segmentation can ensure that clinicians can make wise surgical treatment plans. With the rise of big data and artificial intelligence in recent years
assisted diagnosis of liver cancer based on deep learning has gradually become a popular research topic. Its combination with medicine can realize and predict the condition and assist diagnosis
which has great clinical significance. Segmentation methods for liver tumor CT images based on deep learning have also attracted wide attention in the past few years. From relevant literature in the field of liver tumor image segmentation
this paper mainly summarizes several commonly used segmentation methods for current liver tumor CT images based on deep learning
aiming to provide convenience to related researchers. We comprehensively summarize and analyze the deep learning methods for liver tumor CT images from three aspects: datasets
evaluation indicators and algorithms. First
we introduce common databases of liver tumors and analyze and compare them in terms of year
resolution
number of cases
slice thickness
pixel size
and voxel size to compare the segmentation methods for emerging liver tumors objectively. Second
several important evaluation indicators
such as Dice
relative volume difference
and volumetric overlap error
are also briefly introduced
analyzed
and compared to evaluate the effectiveness of each algorithm in the accuracy of liver tumor segmentation. On the basis of the previous work
we divide the deep learning segmentation methods for CT images of liver tumors into three categories
namely
liver tumor segmentation methods based on fully convolutional network (FCN)
U-Net
and generative adversarial network (GAN). The segmentation methods based on FCN can be further divided into two- and three-dimensional methods in accordance with the dimension of the convolution kernel. The segmentation methods based on U-Net are divided into three subcategories
which are methods based on single network
methods based on multinetwork
and methods combined with traditional methods. Similarly
the segmentation methods based on GAN are divided into three subcategories
which are based on network architecture improvements
generator-based improvements
and other methods. The basic ideas
network architecture forms
improvement schemes
advantages
and disadvantages of various methods are emphasized
and the performance of these methods on typical datasets is compared. Lastly
the advantages
disadvantages
and application scope of the three methods are summarized and compared. The future research trends of liver tumor deep learning segmentation methods are analyzed. 1) The use of three-dimensional neural networks and network deepening is a future research direction in this field. 2) The use of multimodal liver images for segmentation and the combination of multiple different deep neural networks to extract deep information of images for improving the accuracy of liver tumor segmentation are also main research directions in this field. 3) To overcome the problem of lack or unavailability of data
some researchers have shifted the supervised field to a semi-supervised or unsupervised field. For example
GAN is combined with other higher-performance networks. This situation can be further studied in the future. In summary
accurate segmentation of liver tumors is a necessary step in liver disease diagnosis
surgical planning
and postoperative evaluation. Deep learning is superior to traditional segmentation methods when segmenting liver tumors
and the obtained images have higher sensitivity and specificity. This study hopes that clinicians can intuitively and clearly observe the anatomical structure of normal and diseased tissues through the increasingly mature liver tumor segmentation technologies. It provides a scientific basis for clinical diagnosis
surgical procedures
and biomedical research. The research and development of medical image segmentation technologies play an important role in the reform of the medical field and have great research value and significance.
Abdalla A, Ahmed N, Dakua S, Balakrishnan S and Abinahed J. 2020. A surgical-oriented liver segmentation approach using deep learning//Proceedings of 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT). Doha: IEEE: 318-322[ DOI: 10.1109/ICIoT48696.2020.9089512 http://dx.doi.org/10.1109/ICIoT48696.2020.9089512 ]
Alia O M, Mandava R and Aziz M E. 2011. A hybrid harmony search algorithm for MRI brain segmentation. Evolutionary Intelligence, 4(1):31-49[DOI:10.1007/s12065-011-0048-1]
Alom Z, Yakopcic C, Hasan M, Taha T M and Asari V K. 2019. Recurrent residual U-Net for medical image segmentation. Journal of Medical Imaging, 6(1):#14006[DOI:10.1117/1.JMI.6.1.014006]
Arjovsky M, Chintala S and Bottou L. 2017. Wasserstein GAN[EB/OL].[2020-04-12] . https://arxiv.org/pdf/1701.07875.pdf https://arxiv.org/pdf/1701.07875.pdf
Badrinarayanan V, Kendall A and Cipolla R. 2017. Segnet:a deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12):2481-2495[DOI:10.1109/TPAMI.2016.2644615]
Bai S J, Kolter J Z and Koltun V. 2018. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL].[2020-04-12] . https://arxiv.org/pdf/1803.01271.pdf https://arxiv.org/pdf/1803.01271.pdf
Bai Z Q, Jiang H Y, Li S Q and Yao Y D. 2019. Liver tumor segmentation based on multi-scale candidate generation and fractal residual network. IEEE Access, 7:82122-82133[DOI:10.1109/ACCESS.2019.2923218]
Bellver M, Maninis K K, Pont-Tuset J, Giró-i-Nieto X, Torres J and Van Gool L. 2017. Detection-aided liver lesion segmentation using deep learning[EB/OL].[2020-04-12] . https://arxiv.org/pdf/1711.11069.pdf https://arxiv.org/pdf/1711.11069.pdf
Ben-Cohen A, Diamant I, Klang E, Amitai M and Greenspan H. 2016. Fully convolutional network for liver segmentation and lesions detection//Proceedings of the 1st International Workshop on Deep Learning in Medical Image Analysis. Athens, Greece: Springer: 77-85[ DOI: 10.1007/978-3-319-46976-8_9 http://dx.doi.org/10.1007/978-3-319-46976-8_9 ]
Ben-Cohen A, Klang E, Raskin S P, Amitai M M and Greenspan H. 2017. Virtual PET images from CT data using deep convolutional networks: initial results//Proceedings of the 2nd International Workshop on Simulation and Synthesis in Medical Imaging. Québec City: Springer: 49-57[ DOI: 10.1007/978-3-319-68127-6_6 http://dx.doi.org/10.1007/978-3-319-68127-6_6 ]
Ben-Cohen A, Klang E, Raskin S P, Soffer S, Ben-Haim S, Konen E, Amitai M M and Greenspan H. 2019. Cross-modality synthesis from CT to PET using FCN and GAN networks for improved automated lesion detection. Engineering Applications of Artificial Intelligence, 78:186-194[DOI:10.1016/j.engappai.2018.11.013]
Bi L, Kim J, Kumar A and Feng D G. 2017. Automatic liver lesion detection using cascaded deep residual networks[EB/OL].[2020-04-12] . https://arxiv.org/pdf/1704.02703.pdf https://arxiv.org/pdf/1704.02703.pdf
Bilic P, Christ P F, Vorontsov E, Chlebus G, Chen H, Dou Q, Fu C W, Han X, Heng P A, Hesser J, Kadoury S, Konopczynski T, Le M, Li C M, Li X M, LipkovàJ, Lowengrub J, Meine H, Moltz J H, Pal C, Piraud M, Qi X J, Qi J, Rempfler M, Roth K, Schenk A, Sekuboyina A, Vorontsov E, Zhou P, Hülsemeyer C, Beetz M, Ettlinger F, Gruen F, Kaissis G, Lohöfer F, Braren R, Holch J, Hofmann F, Sommer W, Heinemann V, Jacobs C, Mamani G E H, Van Ginneken B, Chartrand G, Tang A, Drozdzal M, Ben-Cohen A, Klang E, Amitai M M, Konen E, Greenspan H, Moreau J, Hostettler A, Soler L, Vivanti R, Szeskin A, Lev-Cohain N, Sosna J, Joskowicz L and Menze B H. 2019. The liver tumor segmentation benchmark (LiTS)[EB/OL].[2020-04-12] . https://arxiv.org/pdf/1901.04056.pdf https://arxiv.org/pdf/1901.04056.pdf
Budak Ü, Guo Y H, Tanyildizi E and Çengür A. 2020. Cascaded deep convolutional encoder-decoder neural networks for efficient liver tumor segmentation. Medical Hypotheses, 134:#109431[DOI:10.1016/j.mehy.2019.109431]
Chen J X, Lin Y, Zhang Y Z, Alber M and Chen D Z. 2016a. Combiningfully convolutional and recurrent neural networks for 3D biomedical image segmentation[EB/OL].[2020-04-12] . https://arxiv.org/pdf/1609.01006.pdf https://arxiv.org/pdf/1609.01006.pdf
Chen L, Song H, Wang C, Cui Y T, Yang J, Hu X H and Zhang L. 2019a. Liver tumor segmentation in CT volumes using an adversarial densely connected network. BMC Bioinformatics, 20(16):#587[DOI:10.1186/s12859-019-3069-x]
Chen L C, Papandreou G, Schroff F and Adam H. 2017. Rethinking atrous convolution for semantic image segmentation[EB/OL].[2020-04-12] . https://arxiv.org/pdf/1706.05587.pdf https://arxiv.org/pdf/1706.05587.pdf
Chen L C, Papandreou G, Kokkinos I, Murphy K and Yuille A L. 2018. DeepLab:semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4):834-848[DOI:10.1109/TPAMI.2017.2699184]
Chen X, Duan Y, Houthooft R, Schulman J, Sutskever I and Abbeel P. 2016b. InfoGAN: interpretable representation learning by information maximizing generative adversarial nets[EB/OL].[2020-04-12] . https://arxiv.org/pdf/1606.03657.pdf https://arxiv.org/pdf/1606.03657.pdf
Chen X Y, Zhang R and Yan P K. 2019b. Feature fusion encoder decoder network for automatic liver lesion segmentation//Proceedings of the 16th IEEE International Symposium on Biomedical Imaging (ISBI 2019). Venice: IEEE: 430-433[ DOI: 10.1109/ISBI.2019.8759555 http://dx.doi.org/10.1109/ISBI.2019.8759555 ]
Chen Y L, Wang K, Liao X Y, Qian Y L, Wang Q, Yuan Z Y and Heng P A. 2019c. Channel-Unet:a spatial channel-wise convolutional neural network for liver and tumors segmentation. Frontiers in Genetics, 10:#1110[DOI:10.3389/fgene.2019.01110]
Chlebus G, Meine H, Moltz J H and Schenk A. 2017. Neural network-based automatic liver tumor segmentation with random forest-based candidate filtering[EB/OL].[2020-04-12] . https://arxiv.org/pdf/1706.00842.pdf https://arxiv.org/pdf/1706.00842.pdf
Chlebus G, Schenk A, Moltz J H, Van Ginneken B, Hahn H K and Meine H. 2018. Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing. Scientific Reports, 8(1):#15497[DOI:10.1038/s41598-018-33860-7]
Cho K, Van Merrienboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H and Bengio Y. 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation[EB/OL].[2020-04-12] . https://arxiv.org/pdf/1406.1078.pdf https://arxiv.org/pdf/1406.1078.pdf
Christ P F, Elshaer M E A, Ettlinger F, Tatavarty S, Bickel M, Bilic P, Rempfler M, Armbruster M, Hofmann F, D'Anastasi M, Sommer W H, Ahmadi S A and Menze B H. 2016. Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields//Proceedings of the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention. Athens: Springer: 415-423[ DOI: 10.1007/978-3-319-46723-8_48 http://dx.doi.org/10.1007/978-3-319-46723-8_48 ]
Christ P F, Ettlinger F, Grün F, Elshaera M E A, Lipkova J, Schlecht S, Ahmaddy F, Tatavarty S, Bickel M, Bilic P, Rempfler M, Hofmann F, Anastasi M D, Ahmadi S A, Kaissis G, Holch J, Sommer W, Braren R, Heinemann V and Menze B. 2017. Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks[EB/OL].[2020-04-12] . https://arxiv.org/pdf/1702.05970.pdf https://arxiv.org/pdf/1702.05970.pdf
Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M, Tarbox L and Prior F. 2013. The Cancer Imaging Archive (TCIA):maintaining and operating a public information repository. Journal of Digital Imaging, 26(6):1045-1057[DOI:10.1007/s10278-013-9622-7]
Cleary K. 2007. Original datasets[EB/OL].[2020-04-12] . http://insight-journal.org/midas/item/view/1346 http://insight-journal.org/midas/item/view/1346
Delmoral J C, Costa D C, Borges D and Tavares J M R S. 2019. Segmentation of pathological liver tissue with dilated fully convolutional networks: a preliminary study//Proceedings of the 6th IEEE Portuguese Meeting on Bioengineering (ENBENG). Lisbon: IEEE: 1-4[ DOI: 10.1109/ENBENG.2019.8692479 http://dx.doi.org/10.1109/ENBENG.2019.8692479 ]
Deng Z F, Guo Q Z and Zhu Z L. 2019. Dynamic regulation of level set parameters using 3D convolutional neural network for liver tumor segmentation. Journal of Healthcare Engineering, 2019:#4321645[DOI:10.1155/2019/4321645]
Denton E, Chintala S, Szlam A and Fergus R. 2015. Deep generative image models using a laplacian pyramid of adversarial networks[EB/OL].[2020-04-12] . https://arxiv.org/pdf/1506.05751.pdf https://arxiv.org/pdf/1506.05751.pdf
Dice L R. 1945. Measures of the amount of ecologic association between species. Ecology, 26(3):297-302[DOI:10.2307/193240]
Dou Q, Chen H, Jin Y M, Yu L Q, Qin J and Heng P A. 2016.3D deeply supervised network for automatic liver segmentation from CT volumes//Proceedings of the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention. Athens: Springer: 149-157[ DOI: 10.1007/978-3-319-46723-8_18 http://dx.doi.org/10.1007/978-3-319-46723-8_18 ]
Drozdzal M, Chartrand G, Vorontsov E, Shakeri M, Di Jorio L, Tang A, Romero A, Bengio Y, Pal C and Kadoury S. 2018. Learning normalized inputs for iterative estimation in medical image segmentation. Medical Image Analysis, 44:1-13[DOI:10.1016/j.media.2017.11.005]
Enokiya Y, Iwamoto Y, Chen Y W and Han X H. 2018. Automatic liver segmentation using U-Net with wasserstein GANs. Journal of Image and Graphics, 6(2):152-159[DOI:10.18178/joig.6.2.152-159]
Frid-Adar M, Klang E, Amitai M, Goldberger J and Greenspan H. 2018. Synthetic data augmentation using GAN for improved liver lesion classification//Proceedings of the 15th IEEE International Symposium on Biomedical Imaging (ISBI 2018). Washington: IEEE: 289-293[ DOI: 10.1109/ISBI.2018.8363576 http://dx.doi.org/10.1109/ISBI.2018.8363576 ]
Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A and Bengio Y. 2014. Generative adversarial nets//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal: MIT Press: 2672-2680
Gu Z W, Cheng J, Fu H Z, Zhou K, Hao H Y, Zhao Y T, Zhang T Y, Gao S H and Liu J. 2019. CE-Net:context encoder network for 2D medical image segmentation. IEEE Transactions on Medical Imaging, 38(10):2281-2292[DOI:10.1109/TMI.2019.2903562]
Han X. 2017. Automatic liver lesion segmentation using a deep convolutional neural network method[EB/OL].[2020-04-12] . https://arxiv.org/pdf/1704.07239.pdf https://arxiv.org/pdf/1704.07239.pdf
He K M, Zhang X Y, Ren S Q and Sun J. 2015. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(9):1904-1916[DOI:10.1109/TPAMI.2015.2389824]
He K M, Zhang X Y, Ren S Q and Sun J. 2016. Deep residual learning for image recognition//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE: 770-778[ DOI: 10.1109/CVPR.2016.90 http://dx.doi.org/10.1109/CVPR.2016.90 ]
Heimann T, Van Ginneken B and Styner M. 2007. Workshop on 3D Segmentation in the Clinic: A Grand Challenge[EB/OL].[2020-04-12] . http://mbi.dkfz-heidelberg.de/grand-challenge2007/sites/orga.htm http://mbi.dkfz-heidelberg.de/grand-challenge2007/sites/orga.htm
Heimann T, Van Ginneken B, Styner M A, Arzhaeva Y, Aurich V, Bauer C, Beck A, Becker C, Beichel R, Bekes G Ö, Bello F, Binnig G, Bischof H, Bornik A, Cashman P M M, Chi Y, Cordova A É, Dawant B M, Fidrich M Á, Furst J D, Furukawa D, Grenacher L, Hornegger J, KainmVller D, Kitney R I, Kobatake H, Lamecker H, Lange T, Lee J, Lennon B, Li R, Li S H, Meinzer H P, Meinzer G Á, Daniela S. Raicu, Rau A M, van Rikxoort E M, Rousson M Ё, Rusko L Á Ó, Saddi K A, Schmidt G V, Seghers D, Shimizu A, Slagmolen P, Sorantin E, Soza G, Susomboon R, Waite J M, Wimmer A and Wolf I. 2009. Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Transactions on Medical Imaging, 28(8):1251-1265[DOI:10.1109/tmi.2009.2013851]
Hochreiter S and Schmidhuber J. 1997. Long short-term memory. Neural Computation, 9(8):1735-1780[DOI:10.1162/neco.1997.9.8.1735]
Hua K L, Hsu C H, Hidayati S C, Cheng W H and Chen Y J. 2015. Computer-aided classification of lung nodules on computed tomography images via deep learning technique. Onco Targets and Therapy, 8:2015-2022[DOI:10.2147/OTT.S80733]
Huang G, Liu Z, Van Der Maaten L and Weinberger K Q. 2017. Densely connected convolutional networks//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE: 2261-2269[ DOI: 10.1109/CVPR.2017.243 http://dx.doi.org/10.1109/CVPR.2017.243 ]
Ircad France. 2020.3Dircadb[EB/OL].[2020-04-12] . https://www.ircad.fr/research/3 dircadb https://www.ircad.fr/research/3 dircadb
Isensee F, Petersen J, Kohl S A A, Jäger P F and Maier-Hein K H. 2019. nnU-Net: breaking the spell on successful medical image segmentation[EB/OL].[2020-04-12] . https://arxiv.org/pdf/1904.08128v1.pdf https://arxiv.org/pdf/1904.08128v1.pdf
Isola P, Zhu J Y, Zhou T H and Efros A A. 2016. Image-to-image translation with conditional adversarial networks[EB/OL].[2020-04-12] . https://arxiv.org/pdf/1611.07004.pdf https://arxiv.org/pdf/1611.07004.pdf
Jaccard P. 1912. The distribution of the flora in the alpine zone. New Phytologist, 11(2):37-50[DOI:10.1111/j.1469-8137.1912.tb05611.x]
Jiang H Y, Shi T Y, Bai Z Q and Huang L L. 2019. AHCNet:an application of attention mechanism and hybrid connection for liver tumor segmentation in CT volumes. IEEE Access, 7:24898-24909[DOI:10.1109/ACCESS.2019.2899608]
Jiang Z K, Lyu X G, Zhang J X, Zhang Q and Wei X P. 2020. Review of deep learning methods for MRI brain tumor image segmentation. Journal of Image and Graphics, 25(2):217-230 [DOI:10.11834/jig.190173]
江宗康, 吕晓钢, 张建新, 张强, 魏小鹏. 2020. MRI脑肿瘤图像分割的深度学习方法综述.中国图象图形学报, 25(2):217-230[DOI:10.11834/jig.190173]
Jin Q G, Meng Z P, Sun C M, Wei L Y and Su R. 2018. RA-UNet: a hybrid deep attention-aware network to extract liver and tumor in CT scans[EB/OL].[2020-04-12] . https://arxiv.org/pdf/1811.01328.pdf https://arxiv.org/pdf/1811.01328.pdf
Kaluva K C, Khened M, Kori A and Krishnamurthi G. 2018.2D-densely connected convolution neural networks for automatic liver and tumor segmentation[EB/OL].[2020-04-12] . https://arxiv.org/pdf/1802.02182v1.pdf https://arxiv.org/pdf/1802.02182v1.pdf
Kass M, Witkin A and Terzopoulos D. 1988. Snakes:active contour models. International Journal of Computer Vision, 1(4):321-331[DOI:10.1007/BF00133570]
Kim B and Ye J C. 2018. Cycle-consistent adversarial network with polyphase U-Nets for liver lesion segmentation[EB/OL].[2018-05-17] . https://openreview.net/pdf?Id=SyQtAooiz https://openreview.net/pdf?Id=SyQtAooiz
Krähenbühl P and Koltun V. 2012. Efficient inference in fully connected crfs with gaussian edge potentials[EB/OL].[2020-04-12] . https://arxiv.org/pdf/1210.5644.pdf https://arxiv.org/pdf/1210.5644.pdf
Kriby J and Jarosz Q. 2020. TCGA-LIHC-the cancer imaging archive (tcia) public access[EB/OL].[2020-04-12] https://wiki.cancerimagingarchive.net/display/Public/TCGA-LIHC https://wiki.cancerimagingarchive.net/display/Public/TCGA-LIHC
Krizhevsky A, Sutskever I and Hinton G E. 2012. Imagenet classification with deep convolutional neural networks//Proceedings of the 25th International Conference on Neural Information Processing Systems. Canada:Curran Associates Inc:1097-1105
Landman B, Xu Z B, Igelsias J E, Styner M, Langerak T R, Klein A, Shen D G, Wang H Z, Gee J, Akhondi-Asl A, Ledig C, Fan Y, Landman B, Xu Z B, Damon S, Harrigan R and Plassard A. 2015. Multi-atlas labeling beyond the cranial vault-workshop and challenge[EB/OL].[2020-05-31] . https://www.synapse.org/#!Synapse: syn3193805/wiki/89480 https://www.synapse.org/#!Synapse:syn3193805/wiki/89480
Larsson G, Maire M and Shakhnarovich G. 2016. Fractalnet: ultra-deep neural networks without residuals[EB/OL].[2020-04-12] . https://arxiv.org/pdf/1605.07648v1.pdf https://arxiv.org/pdf/1605.07648v1.pdf
Lee C Y, Xie S N, Gallagher P, Zhang Z Y and Tu Z W. 2014. Deeply-supervised nets[EB/OL].[2020-04-12] . https://arxiv.org/pdf/1409.5185.pdf https://arxiv.org/pdf/1409.5185.pdf
Lei T, Zhou W Z, Zhang Y X, Wang R S, Meng H Y and Nandi A K. 2020. Lightweight V-Net for liver segmentation//Proceedings of ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Barcelona: IEEE: 1379-1383[ DOI: 10.1109/ICASSP40776.2020.9053454 http://dx.doi.org/10.1109/ICASSP40776.2020.9053454 ]
Li G D, Chen X J, Shi F, Zhu W F, Tian J and Xiang D H. 2015. Automatic liver segmentation based on shape constraints and deformable graph cut in CT images. IEEE Transactions on Image Processing, 24(12):5315-5329[DOI:10.1109/TIP.2015.2481326]
Li S and Tso G K F. 2018. Bottleneck supervised U-Net for pixel-wise liver and tumor segmentation[EB/OL] .[2020-04-12]. https://arxiv.org/pdf/1810.10331.pdf https://arxiv.org/pdf/1810.10331.pdf
Li X M, Chen H, Qi X J, Dou Q, Fu C W and Heng P A. 2018. H-DenseUNet:hybrid densely connected UNet for Liver and tumor segmentation from CT volumes. IEEE Transactions on Medical Imaging, 37(12):2663-2674[DOI:10.1109/TMI.2018.2845918]
Liu X, Shi J and Zhang Q. 2015. Tumor classification by deep polynomial network and multiple kernel learning on small ultrasound image dataset//Proceedings of the 6th International Workshop on Machine Learning in Medical Imaging. Munich: Springer: 313-320[ DOI: 10.1007/978-3-319-24888-2_38 http://dx.doi.org/10.1007/978-3-319-24888-2_38 ]
Liu Z, Song Y Q, Sheng V S, Wang L M, Jiang R, Zhang X L and Yuan D Q. 2019. Liver CT sequence segmentation based with improved U-Net and graph cut. Expert Systems With Applications, 126:54-63[DOI:10.1016/j.eswa.2019.01.055]
Long J, Shelhamer E and Darrell T. 2015. Fully convolutional networks for semantic segmentation//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE: 3431-3440[ DOI: 10.1109/CVPR.2015.7298965 http://dx.doi.org/10.1109/CVPR.2015.7298965 ]
Lu F, Wu F, Hu P J, Peng Z Y and Kong D X. 2017. Automatic 3D liver location and segmentation via convolutional neural network and graph cut. International Journal of Computer Assisted Radiology and Surgery, 12(2):171-182[DOI:10.1007/s11548-016-1467-3]
Luc P, Couprie C, Chintala S and Verbeek J. 2016. Semantic segmentation using adversarial networks[EB/OL].[2020-04-12] . https://arxiv.org/pdf/1611.08408.pdf https://arxiv.org/pdf/1611.08408.pdf
Maninis K K, Pont-Tuset J, Arbeláez P and Van Gool L. 2016. Deep retinal image understanding//Proceedings of the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention. Athens: Springer: 140-148[ DOI: 10.1007/978-3-319-46723-8_17 http://dx.doi.org/10.1007/978-3-319-46723-8_17 ]
Meng L, Tian Y Y and Bu S H. 2020. Liver tumor segmentation based on 3D convolutional neural network with dual scale. Journal of Applied Clinical Medical Physics, 21(1):144-157[DOI:10.1002/acm2.12784]
Milletari F, Navab N and Ahmadi S A. 2016. V-net: fully convolutional neural networks for volumetric medical image segmentation//Proceedings of the 4th International Conference on 3D Vision (3DV). Stanford: IEEE: 565-571[ DOI: 10.1109/3DV.2016.79 http://dx.doi.org/10.1109/3DV.2016.79 ]
Mirza M and Osindero S. 2014. Conditional generative adversarial nets[EB/OL].[2020-04-12] . https://arxiv.org/pdf/1411.1784.pdf https://arxiv.org/pdf/1411.1784.pdf
Nasiri N, Foruzan A H and Chen Y W. 2020. Integration of a knowledge-based constraint into generative models with applications in semi-automatic segmentation of liver tumors. Biomedical Signal Processing and Control, 57:#101725[DOI:10.1016/j.bspc.2019.101725]
Nie D, Wang L, Gao Y Z and Shen D G. 2016. Fully convolutional networks for multi-modality isointense infant brain image segmentation//Proceedings of the 13th IEEE International Symposium on Biomedical Imaging (ISBI). Prague: IEEE: 1342-1345[ DOI: 10.1109/ISBI.2016.7493515 http://dx.doi.org/10.1109/ISBI.2016.7493515 ]
Noh H, Hong S and Han B. 2015. Learning deconvolution network for semantic segmentation//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago: IEEE: 1520-1528[ DOI: 10.1109/ICCV.2015.178 http://dx.doi.org/10.1109/ICCV.2015.178 ]
Novikov A A, Major D, Wimmer M, Lenis D and Bühler K. 2019. Deep sequential segmentation of organs in volumetric medical scans. IEEE Transactions on Medical Imaging, 38(5):1207-1215[DOI:10.1109/TMI.2018.2881678]
Pandey R K, Vasan A and Ramakrishnan A G. 2018. Segmentation of liver lesions with reduced complexity deep models[EB/OL].[2020-04-12] . https://arxiv.org/pdf/1805.09233v1.pdf https://arxiv.org/pdf/1805.09233v1.pdf
Pang S C, Du A A, Yu Z M and Orgun M A. 2020. Correlation matters: multi-scale fine-grained contextual information extraction for hepatic tumor segmentation//Proceedings of the 24th Acific-Asia Conference on Knowledge Discovery and Data Mining. Singapore: Springer: 462-474[ DOI: 10.1007/978-3-030-47426-3_36 http://dx.doi.org/10.1007/978-3-030-47426-3_36 ]
Parker J A, Kenyon R V and Troxel D E. 1983. Comparison of interpolating methods for image resampling. IEEE Transactions on Medical Imaging, 2(1):31-39[DOI:10.1109/TMI.1983.4307610]
Poudel R P K, Lamata P and Montana G. 2017. Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation//Proceedings of the 1 st Reconstruction, Segmentation, and Analysis of Medical Images. Athens: Springer: 83-94[ DOI: 10.1007/978-3-319-52280-7_8 http://dx.doi.org/10.1007/978-3-319-52280-7_8 ]
Radford A, Metz L and Chintala S. 2015. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL].[2020-04-12] . https://arxiv.org/pdf/1511.06434.pdf https://arxiv.org/pdf/1511.06434.pdf
Rafiei S, Nasr-Esfahani E, Najarian K, Karimi N, Samavi S and Reza S M. 2018. Liver segmentation in CT images using three dimensional to two dimensional fully convolutional network//Proceedings of the 25th IEEE International Conference on Image Processing (ICIP). Athens: IEEE: 2067-2071[ DOI: 10.1109/ICIP.2018.8451238 http://dx.doi.org/10.1109/ICIP.2018.8451238 ]
Rezaei M, Yang H J, Harmuth K and Meinel C. 2019. Conditional generative adversarial refinement networks for unbalanced medical image semantic segmentation//Proceedings of 2019 IEEE Winter Conference on Applications of Computer Vision (WACV). Waikoloa Village: IEEE: 1836-1845[ DOI: 10.1109/WACV.2019.00200 http://dx.doi.org/10.1109/WACV.2019.00200 ]
Ronneberger O, Fischer P and Brox T. 2015. U-net: convolutional networks for biomedical image segmentation//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer: 234-241[ DOI: 10.1007/978-3-319-24574-4_28 http://dx.doi.org/10.1007/978-3-319-24574-4_28 ]
Roth H R, Oda H, Zhou X R, Shimizu N, Yang Y, Hayashi Y, Oda M, Fujiwara M, Misawa K and Mori K. 2018. An application of cascaded 3D fully convolutional networks for medical image segmentation. Computerized Medical Imaging and Graphics, 66:90-99[DOI:10.1016/j.compmedimag.2018.03.001]
Sakboonyara B and Taeprasartsit P. 2019. U-Net and mean-shift histogram for efficient liver segmentation from CT images//Proceedings of the 11th International Conference on Knowledge and Smart Technology (KST). Phuket: IEEE: 51-56[ DOI: 10.1109/KST.2019.8687816 http://dx.doi.org/10.1109/KST.2019.8687816 ]
Sandfort V, Yan K, Pickhardt P J and Summers R M. 2019. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks. Scientific Reports, 9(1):#16884[DOI:10.1038/s41598-019-52737-x]
Sandler M, Howard A, Zhu M L, Zhmoginov A and Chen L C. 2018. MobileNetV2: inverted residuals and linear bottlenecks//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE: 4510-4520[ DOI: 10.1109/CVPR.2018.00474 http://dx.doi.org/10.1109/CVPR.2018.00474 ]
Schlemper J, Oktay O, Schaap M, Heinrich M, Kainz B, Glocker B and Rueckert D. 2019. Attention gated networks:learning to leverage salient regions in medical images. Medical Image Analysis, 53:197-207[DOI:10.1016/j.media.2019.01.012]
Seo H, Huang C, Bassenne M, Xiao R X and Xing L. 2020. Modified U-Net (mU-Net) with incorporation of object-dependent high level features for improved liver and liver-tumor segmentation in CT images. IEEE Transactions on Medical Imaging, 39(5):1316-1325[DOI:10.1109/TMI.2019.2948320]
Shi W Z, Caballero J, Huszár F, Totz J, Aitken A P, Bishop R, Rueckert D and Wang Z H. 2016. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE: 1874-1883[ DOI: 10.1109/CVPR.2016.207 http://dx.doi.org/10.1109/CVPR.2016.207 ]
Shi X J, Chen Z R, Wang H, Yeung D Y, Wong W K and Woo W C. 2015. Convolutional LSTM network: a machine learning approach for precipitation nowcasting//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal: ACM: 802-810
Simonyan K and Zisserman A. 2014. Very deep convolutional networks for large-scale image recognition[EB/OL].[2020-04-12] . https://arxiv.org/pdf/1409.1556.pdf https://arxiv.org/pdf/1409.1556.pdf
Sirlin C B, Hussain H K, Jonas E, Kanematsu M, Lee M J, Merkle E M, Peck-Radosavljevic M, Reeder S B, Ricke J and Sakamoto M. 2014. Consensus report from the 6th International forum for liver MRI using gadoxetic acid. Journal of Magnetic Resonance Imaging, 40(3):516-529[DOI:10.1002/jmri.24419]
Sun C J, Guo S X, Zhang H M, Li J, Chen M M, Ma S Z, Jin L Y, Liu X M, Li X Y and Qian X H. 2017. Automatic segmentation of liver tumors from multiphase contrast-enhanced CT images based on FCNs. Artificial Intelligence in Medicine, 83:58-66[DOI:10.1016/j.artmed.2017.03.008]
Szegedy C, Ioffe S, Vanhoucke V and Alemi A. 2016. Inception-v4, inception-resnet and the impact of residual connections on learning[EB/OL].[2020-04-12] . https://arxiv.org/pdf/1602.07261.pdf https://arxiv.org/pdf/1602.07261.pdf
Tang Y B, Cai J Z, Lu L, Harrison A P, Yan K, Xiao J, Yang L and Summers R M. 2018. CT image enhancement using stacked generative adversarial networks and transfer learning for lesion segmentation improvement//Proceedings of the 9th International Workshop on Machine Learning in Medical Imaging. Granada: Springer: 46-54[ DOI: 10.1007/978-3-030-00919-9_6 http://dx.doi.org/10.1007/978-3-030-00919-9_6 ]
Vorontsov E, Tang A, Pal C and Kadoury S. 2018. Liver lesion segmentation informed by joint liver segmentation//Proceedings of the 15th IEEE International Symposium on Biomedical Imaging (ISBI 2018). Washington: IEEE: 1332-1335[ DOI: 10.1109/ISBI.2018.8363817 http://dx.doi.org/10.1109/ISBI.2018.8363817 ]
Wang C, Song H, Chen L, Li Q, Yang J, Hu X T and Zhang L. 2018. Automatic liver segmentation using multi-plane integrated fully convolutional neural networks//Proceedings of 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Madrid: IEEE: 1-6[ DOI: 10.1109/BIBM.2018.8621257 http://dx.doi.org/10.1109/BIBM.2018.8621257 ]
Wang Z G and Wang G L. 2018. Triplanar convolutional neural network for automatic liver and tumor image segmentation. International Journal of Performability Engineering, 14(12):3151-3158[DOI:10.23940/ijpe.18.12.p24.31513158]
Xia K J, Yin H S, Qian P J, Jiang Y Z and Wang S H. 2019. Liver semantic segmentation algorithm based on improved deep adversarial networks in combination of weighted loss function on abdominal CT images. IEEE Access, 7:96349-96358[DOI:10.1109/ACCESS.2019.2929270]
Xiao X J, Zhao J J, Qiang Y, Chong J, Yang X T, Kazihise N G F, Chen B and Li S. 2019. Radiomics-guided GAN for segmentation of liver tumor without contrast agents//Proceedings of the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention. Shenzhen: Springer: 237-245[ DOI: 10.1007/978-3-030-32245-8_27 http://dx.doi.org/10.1007/978-3-030-32245-8_27 ]
Xu P L, Chen C, Wang X Y, Li W T and Sun J Q. 2020. ROI-based intraoperative MR-CT registration for image-guided multimode tumor ablation therapy in hepatic malignant tumors. IEEE Access, 8:13613-13619[DOI:10.1109/ACCESS.2020.2966518]
Yang D, Xu D G, Zhou S K, Georgescu B, Chen M Q, Grbic S, Metaxas D and Comaniciu D. 2017. Automatic liver segmentation using an adversarial image-to-image network//Proceedings of the 20th International Conference on Medical Image Computing and Computer-Assisted Intervention. Quebec City: Springer: 507-515[ DOI: 10.1007/978-3-319-66179-7_58 http://dx.doi.org/10.1007/978-3-319-66179-7_58 ]
YuF and Koltun V. 2015. Multi-scale context aggregation by dilated convolutions[EB/OL].[2020-04-12] . https://arxiv.org/pdf/1511.07122.pdf https://arxiv.org/pdf/1511.07122.pdf
Yuan Y D. 2017. Hierarchical convolutional-deconvolutional neural networks for automatic liver and tumor segmentation[EB/OL].[2020-04-12] . https://arxiv.org/pdf/1710.04540v1.pdf https://arxiv.org/pdf/1710.04540v1.pdf
Yuan Y D, Chao M and Lo Y C. 2017. Automatic skin lesion segmentation using deep fully convolutional networks with jaccard distance. IEEE Transactions on Medical Imaging, 36(9):1876-1886[DOI:10.1109/TMI.2017.2695227]
Zhang J P, Xie Y T, Zhang P P, Chen H, Xia Y and Shen C H. 2019. Light-weight hybrid convolutional network for liver tumor segmentation//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Macao: Morgan Kaufmann: 4271-4277[ DOI: 10.24963/ijcai.2019/593 http://dx.doi.org/10.24963/ijcai.2019/593 ]
Zhang Y, Jiang B X, Wu J, Ji D C, Liu Y L, Chen Y Y, Wu E X and Tang X Y. 2020. Deep learning initialized and gradient enhanced level-set based segmentation for liver tumor from CT images. IEEE Access, 8:76056-76068[DOI:10.1109/ACCESS.2020.2988647]
Zhang Y, Jiang X, Zhong C, Zhang Y, Shi Z C, Li Z S and He Z Q. 2018. SequentialSegNet: combination with sequential feature for multi-organ segmentation//Proceedings of the 24th International Conference on Pattern Recognition (ICPR). Beijing: IEEE: 3947-3952[ DOI: 10.1109/ICPR.2018.8546017 http://dx.doi.org/10.1109/ICPR.2018.8546017 ]
Zhou Z W, Siddiquee M R, Tajbakhsh N and Liang J M. 2018. UNet++: a nested U-Net architecture for medical image segmentation//Proceedings of the 4th International Workshop on Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Granada: Springer: 3-11[ DOI: 10.1007/978-3-030-00889-5_1 http://dx.doi.org/10.1007/978-3-030-00889-5_1 ]
Zhu Y S, Zhao C Y, Guo H Y, Wang J Q, Zhao X and Lu H Q. 2019. Attention CoupleNet:fully convolutional attention coupling network for object detection. IEEE Transactions on Image Processing, 28(1):113-126[DOI:10.1109/TIP.2018.2865280]
相关作者
相关机构
京公网安备11010802024621