医学影像疾病诊断的残差神经网络优化算法研究进展
Progress of residual neural network optimization algorithm for medical imaging disease diagnosis
- 2020年25卷第10期 页码:2079-2092
纸质出版日期: 2020-10-16 ,
录用日期: 2020-07-20
DOI: 10.11834/jig.200207
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2020-10-16 ,
录用日期: 2020-07-20
移动端阅览
周涛, 霍兵强, 陆惠玲, 师宏斌. 医学影像疾病诊断的残差神经网络优化算法研究进展[J]. 中国图象图形学报, 2020,25(10):2079-2092.
Tao Zhou, Bingqiang Huo, Huiling Lu, Hongbin Shi. Progress of residual neural network optimization algorithm for medical imaging disease diagnosis[J]. Journal of Image and Graphics, 2020,25(10):2079-2092.
残差神经网络(residual neural network,ResNet)及其优化是深度学习研究的热点之一,在医学图像领域应用广泛,在肿瘤、心脑血管和神经系统疾病等重大疾病的临床诊断、分期、转移、治疗决策和靶区勾画方面取得良好效果。本文对残差神经网络的学习优化进行了总结:阐述了残差神经网络学习算法优化,从激活函数、损失函数、参数优化算法、学习衰减率、归一化和正则化技术等6方面进行总结,其中激活函数的改进方法主要有Sigmoid、tanh、ReLU、PReLU(parameteric ReLU)、随机化ReLU(randomized leaky ReLU,RReLU)、ELU(exponential linear units)、Softplus函数、NoisySoftplus函数以及Maxout共9种;损失函数主要有交叉熵损失、均方损失、欧氏距离损失、对比损失、合页损失、Softmax-Loss、L-Softmax Loss、A-Softmax Loss、L2 Softmax Loss、Cosine Loss、Center Loss和焦点损失共12种;学习率衰减总结了8种,即分段常数衰减、多项式衰减、指数衰减、反时限衰减、自然指数衰减、余弦衰减、线性余弦衰减和噪声线性余弦衰减;归一化算法有批量归一化和提出批量重归一化算法;正则化方法主要有增加输入数据、数据增强、早停法、L1正则化、L2正则化、Dropout和Dropout Connect共7种。综述了残差网络模型在医学图像疾病诊断中的应用研究,梳理了残差神经网络在肺部肿瘤、皮肤疾病、乳腺癌、大脑疾病、糖尿病和血液病等6种疾病诊断中的应用研究;对深度学习在医学图像未来发展进行了总结和展望。
Residual neural network (ResNet) has gained considerable attention in deep learning research over the last few years and has made great achievements in computer vision. The deep convolutional network represented by ResNet is increasingly used in the field of medical imaging and has achieved good results in the clinical diagnosis
staging
metastasis
treatment decision
and target area delineation of major diseases
such as tumors
cardiovascular and cerebrovascular diseases
and nervous system diseases. The optimization of the ResNet algorithm is an important part of the ResNet research. It largely determines model performance
such as generalization and convergence. This article summarizes the learning optimization of ResNet. First
the optimization of the learning algorithm of ResNet is elaborated
and the six aspects of activation function
loss function
parameter optimization algorithm
learning decay rate algorithm
normalization
and regularization are summarized. Nine improvement methods exist for the activation function; they are sigmoid
tanh
ReLU
PReLU
randomized ReLU
exponential linear units(ELU)
softplus function
noisy softplus function
and maxout. The loss function includes 12 types: cross-entropy
mean square
Euclidean distance
contrast
hinge
softmax
L-softmax
A-softmax
L2 softmax
cosine
center
and focus losses. Eight learning rate decay methods
namely
piecewise constant
polynomial
exponential
inverse time
natural exponential
cosine
linear cosine
and noise linear cosine
are summarized. The normalization algorithms include batch normalization and renormalization. The regularization technologies include seven types: input data
data enhancement
early stop method
L1 regularization
L2 regularization
dropout
and dropout connect. Second
the application study of the residual network model in the diagnosis of medical imaging diseases is reviewed. ResNet is used to diagnose six types of diseases: lung tumor
skin disease
breast cancer
brain disease
diabetes
and hematological disease. 1) Lung cancer. Considerable data show that the incidence of lung cancer is increasing yearly
which is a serious threat to human health. Early diagnosis and detection are essential for the treatment of lung cancer. The main contributions of ResNet in lung tumor research are particle swarm optimization(PSo)+convolutional neural network(CNN)
intermediate dense projection method+DenseNet
DenseNet+fully convolutional network(FCN)
attention mechanism+ResNet
dense network+U-Net
and 3D+CNN. 2) Skin cancer. Malignant melanoma is one of the most common and deadly skin cancers. Melanoma can be cured if it is properly treated in the early stage. The main contributions of ResNet in the diagnosis and research of skin diseases are integrated learning+CNN
multichannel ResNet
ResNet+support vector machine(SVM)
integrated learning+ResNet
and whale optimization algorithm+CNN. 3) Breast cancer. It is a malignant tumor in women
which seriously affects their physical and mental health. The main contributions of ResNet in the diagnosis and research of breast cancer include transfer learning+ResNet
decision tree+ResNet
CNN+SVM
DesneNet-Ⅱ
and SE-attention+CNN. 4) Alzheimer's disease (AD). It is an irreversible brain disease accompanied with progressive impairment of memory and cognitive functions. No effective cure method exists for AD. Early diagnosis of AD is particularly important for patient care and treatment. The main contributions of ResNet in the diagnosis and research of brain diseases are DenseNet
multiscale ResNet
3DResNet
and multitask CNN+3D DenseNet. 5) Diabetic retinopathy (glycemic retinopathy). It is an eye disease induced by long-term diabetes
which will cause the patient to lose sight and eventually lead to blindness. The main contributions of ResNet in relevant diagnosis and research are migration learning+CNN
FCN+ResNet
multicategory ResNet
and ResNet+SVM. 6) Blood diseases. The proportion of white blood cells in liquid is usually an indicator of diseases. The classification and counting of white blood cells are used in the process of diagnosing diseases. White blood cell test plays a vital role in the detection and treatment of leukemia
anemia
and other diseases. The main contributions of ResNet in the diagnosis and research of blood diseases are as follows: deep supervision ResNet
fine-tuned ResNet
deep cross ResNet
and deep supervision FCN. Lastly
the future development of deep learning in medical imaging is summarized. In this paper
the algorithms of ResNet are systematically summarized
which has a positive significance to the research and development of ResNet.
深度学习残差神经网络优化算法医学图像疾病诊断
deep learningresidual neural network(ResNet)optimization algorithmmedical imagedisease diagnosis
Bello I, Zoph B, Vasudevan V and Le Q V. 2017. Neural optimizer search with reinforcement learning//Proceedings of the 34thInternational Conference on Machine Learning. Sydney: PMLR: 459-468
Chen H, Dou Q, Yu L Q, Qin J and Heng P A. 2018. VoxResNet:deep voxelwise residual networks for brain segmentation from 3D MR images. NeuroImage, 170:446-455[DOI:10.1016/j.neuroimage.2017.04.041]
Chougrad H, Zouaki H and Alheyane O. 2018. Deep Convolutional Neural Networks for breast cancer screening. Computer Methods and Programs in Biomedicine, 157:19-30[DOI:10.1016/j.cmpb.2018.01.011]
Chu J H, Wu Z R, Lyu W and Li Z. 2018. Breast cancer diagnosis system based on transfer learning and deep convolutional neural networks. Laser and Optoelectronics Progress, 55(8):#081001
褚晶辉, 吴泽蕤, 吕卫, 李喆. 2018.基于迁移学习和深度卷积神经网络的乳腺肿瘤诊断系统.激光与光电子学进展, 55(8):#081001 [DOI:10.3788/LOP55.081001]
Clevert D A, Unterthiner T and Hochreiter S. 2016. Fast and accurate deep network learning by exponential linear units (ELUs)[EB/OL].[2020-05-26].https://arxiv.org/pdf/1511.07289.pdfhttps://arxiv.org/pdf/1511.07289.pdf
Dai Y J, Yan S J and Song C L. 2018. Benign or malignant lung nodules classification model based on modified DenseNet. Chinese Journal of Medical Imaging Technology, 34(7):1104-1109
戴垚均, 闫士举, 宋成利. 2018.基于密集网络改进的肺结节良恶性分类模型.中国医学影像技术, 34(7):1104-1109 [DOI:10.13929/j.1003-3289.201710013]
Dauphin Y N, Pascanu R, Gulcehre C, Cho K, Ganguli S and Bengio Y. 2014. Identifying and attacking the saddle point problem in high-dimensional non-convex optimization//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge: ACM: 2933-2941
Deng J, Ma Y Y, Li D A, Zhao J M, Liu Y and Zhang H. 2020. Classification of breast density categories based on SE-Attention neural networks. Computer Methods and Programs in Biomedicine, 193:#105489[DOI:10.1016/j.cmpb.2020.105489]
Du J, Chen Y H, Zhang L and Mai Y C. 2018. Energy-efficient facial expression recognition based on improved deep residual networks. Computer Science, 45(9):303-307, 319
杜进, 陈云华, 张灵, 麦应潮. 2018.基于改进深度残差网络的低功耗表情识别.计算机科学, 45(9):303-307, 319 [DOI:10.11896/j.issn.1002-137X.2018.09.051]
Feng Y X and Li Y M. 2018. An overview of deep learning optimization methods and learning rate attenuation methods. Hans Journal of Data Mining, 8(4):186-200
冯宇旭, 李裕梅. 2018.深度学习优化器方法及学习率衰减方式综述.数据挖掘, 8(4):186-200 [DOI:10.12677/HJDM.2018.84020]
Gan J Y, Zhai Y K, Huang Y, Zeng J Y and Jiang K Y. 2019. Research of facial beauty prediction based on deep convolutional features using double activation layer. Acta Electronica Sinica, 47(3):636-642
甘俊英, 翟懿奎, 黄聿, 曾军英, 姜开永. 2019.基于双激活层深度卷积特征的人脸美丽预测研究.电子学报, 47(3):636-642 [DOI:10.3969/j.issn.0372-2112.2019.03.017]
Gandomkar Z, Brennan P C and Mello-Thoms C. 2018. MuDeRN:multi-category classification of breast histopathological image using deep residual networks. Artificial Intelligence in Medicine, 88:14-24[DOI:10.1016/j.artmed.2018.04.005]
Glorot X, Bordes A and Bengio Y. 2011. Deepsparse rectifier neural networks//Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. Fort Lauderdale: JMLR: 315-323
Gong P, Cheng Y H and Wang X S. 2015. Benign or malignant classification of lung nodules based on semantic attributes. Acta Electronica Sinica, 43(12):2476-2483
巩萍, 程玉虎, 王雪松. 2015.基于语义属性的肺结节良恶性分类.电子学报, 43(12):2476-2483 [DOI:10.3969/j.issn.0372-2112.2015.12.020]
Guo S T and Yang Z W. 2018. Multi-Channel-ResNet:an integration framework towards skin lesion analysis. Informatics in Medicine Unlocked, 12:67-74[DOI:10.1016/j.imu.2018.06.006]
Harangi B. 2018. Skin lesion classification with ensembles of deep convolutional neural networks. Journal of Biomedical Informatics, 86:25-32[DOI:10.1016/j.jbi.2018.08.006]
He K M, Zhang X Y, Ren S Q and Sun J. 2015. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification//Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). Santiago: IEEE: 1026-1034[DOI:10.1109/ICCV.2015.123http://dx.doi.org/10.1109/ICCV.2015.123]
He K M, Zhang X Y, Ren S Q and Sun J. 2016. Deep residual learning for image recognition//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE: 770-778[DOI:10.1109/CVPR.2016.90http://dx.doi.org/10.1109/CVPR.2016.90]
Hu H G, Kong X Y, Zhou Q W, Guan Q and Chen S Y. 2019. Melanoma classification method by integrating deep convolutional residual network. Computer Science, 46(5):247-253
胡海根, 孔祥勇, 周乾伟, 管秋, 陈胜勇. 2019.基于深层卷积残差网络集成的黑色素瘤分类方法.计算机科学, 46(5):247-253 [DOI:10.11896/j.issn.1002-137X.2019.05.038]
Hu W J, Chen W, Feng H Z, Zhang T P, Zhu Z M and Pan Q M. 2017. A survey of depth learning methods for detecting lung nodules by CT images. Journal of Zhejiang University (Science Edition), 44(4):379-384
胡伟俭, 陈为, 冯浩哲, 张天平, 朱正茂, 潘巧明. 2017.应用于平扫CT图像肺结节检测的深度学习方法综述.浙江大学学报(理学版), 44(4):379-384 [DOI:10.3785/j.issn.1008-9497.2017.04.001]
Ioffe S and Szegedy C. 2015. Batch normalization: accelerating deep network training by reducing internal covariate shift//Proceedings of the 32nd International Conference on Machine Learning. Lille: JMLR: 448-456
Ioffe S. 2017. Batch renormalization: towards reducing minibatch dependence in batch-normalized models//Proceedings of the 31st Conference on Neural Information Processing Systems. Long Beach: NIPS: 1942-1950
Khojasteh P, Júnior L A P, Carvalho T, Rezende E, Aliahmad B, Papa J P and Kumar D K. 2019. Exudate detection in fundus images using deeply-learnable features. Computers in Biology and Medicine, 104:62-69[DOI:10.1016/j.compbiomed.2018.10.031]
Krizhevsky A, Sutskever I and Hinton G E. 2012. ImageNet classification with deep convolutional neural networks//Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc.: 1097-1105
Lei H J, Han T, Zhou F, Yu Z, Qin J, Elazab A and Lei B Y. 2018. A deeply supervised residual network for HEp-2 cell classification via cross-modal transfer learning. Pattern Recognition, 79:290-302[DOI:10.1016/j.patcog.2018.02.006]
Li F and Liu M H. 2018. Alzheimer's disease diagnosis based on multiple cluster dense convolutional networks. Computerized Medical Imaging and Graphics, 70:101-110[DOI:10.1016/j.compmedimag.2018.09.009]
Li H, Yu Z, Ni D, Lei B Y and Wang T F. 2018. Melanoma recognition in dermoscopy images via deep residual network. Chinese Journal of Biomedical Engineering, 37(3):274-282
李航, 余镇, 倪东, 雷柏英, 汪天富. 2018.基于深度残差网络的皮肤镜图像黑色素瘤的识别.中国生物医学工程学报, 37(3):274-282 [DOI:10.3969/j.issn.0258-8021.2018.03.003]
Li H, Zhuang S S, Li D A, Zhao J M and Ma Y Y. 2019. Benign and malignant classification of mammogram images based on deep learning. Biomedical Signal Processing and Control, 51:347-354[DOI:10.1016/j.bspc.2019.02.017]
Liang M M, Zhou T, Xia Y, Zhang F F and Yang J. 2018. Lung tumor images recognition based on PSO-ConvK convolutional neural network. Journal of Shandong University (Engineering Science), 48(5):77-84
梁蒙蒙, 周涛, 夏勇, 张飞飞, 杨健. 2018.基于PSO-ConvK卷积神经网络的肺部肿瘤图像识别.山东大学学报(工学版), 48(5):77-84[DOI:10.6040/j.issn.1672-3961.0.2018.191]
Lin T Y, Goyal P, Girshick R, He K M and Dollár P. 2017. Focal loss for dense object detection//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice: IEEE: 2980-2988[DOI:10.1109/ICCV.2017.324http://dx.doi.org/10.1109/ICCV.2017.324]
Litjens G, Kooi T, Bejnordi B E, Setio A A A, Ciompi F, Ghafoorian M, Van Der Laak J A W M, Van Ginneken B and Sánchez C I. 2017. A survey on deep learning in medical image analysis. Medical Image Analysis, 42:60-88[DOI:10.1016/j.media.2017.07.005]
Liu M H, Li F, Yan H, Wang K D, Ma Y X, Initiative A D N, Shen L and Xu M Q. 2020. A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease. NeuroImage, 208:#116459[DOI:10.1016/j.neuroimage.2019.116459]
Liu W Y, Wen Y D, Yu Z D and Yang M.2016. Large-margin softmax loss for convolutional neural networks//Proceedings of the 33rd International Conference on International Conference on Machine Learning. New York: ACM: 507-516
Liu W Y, Wen Y D, Yu Z D, Li M, Raj B and Song L. 2017. Sphereface: deep hypersphere embedding for face recognition//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE: 212-220[DOI:10.1109/CVPR.2017.713http://dx.doi.org/10.1109/CVPR.2017.713]
Liu Z B, Fang X S, Yang H H and Lan R S. 2018. The diagnosis of Alzheimer's disease classification based on multi-scale residual neutral network. Journal of Shandong University (Engineering Science), 48(6):1-7, 18
刘振丙, 方旭升, 杨辉华, 蓝如师. 2018.基于多尺度残差神经网络的阿尔茨海默病诊断分类.山东大学学报(工学版), 48(6):1-7, 18 [DOI:10.6040/j.issn.1672-3961.0.2018.205]
Loshchilov I and Hutter F. 2017. SGDR: stochastic gradient descent with warm restarts[EB/OL].[2020-05-26].https://arxiv.org/pdf/1608.03983.pdfhttps://arxiv.org/pdf/1608.03983.pdf
Maier A, Syben C, Lasser T and Riess C. 2019. A gentle introduction to deep learning in medical image processing. Zeitschrift für Medizinische Physik, 29(2):86-101[DOI:10.1016/j.zemedi.2018.12.003]
Mo J, Zhang L and Feng Y Q. 2018. Exudate-based diabetic macular edema recognition in retinal images using cascaded deep residual networks. Neurocomputing, 290:161-171[DOI:10.1016/j.neucom.2018.02.035]
Murad A, Kwon G R and Pyun J Y. 2018. P2-402:brain age prediction from minimally preprocessed MRI scans using 3D deep residual neural networks. Alzheimer's and Dementia, 2018, 14(7S):#859[DOI:10.1016/j.jalz.2018.06.1094]
Nair V and Hinton G E. 2010. Rectified linear units improve restricted boltzmann machines//Proceedings of the 27th International Conference on International Conference on Machine Learning. Madison: ACM: 807-814
Nibali A, He Z and Wollersheim D. 2017. Pulmonary nodule classification with deep residual networks. International Journal of Computer Assisted Radiology and Surgery, 12(10):1799-1808[DOI:10.1007/s11548-017-1605-6]
Qin F W, Gao N N, Peng Y, Wu Z Z, Shen S Y and Grudtsin A. 2018. Fine-grained leukocyte classification with deep residual learning for microscopic images. Computer Methods and Programs in Biomedicine, 162:243-252[DOI:10.1016/j.cmpb.2018.05.024]
Ranjan R, Castillo C D and Chellappa R. 2017.L2-constrained softmax loss for discriminative face verification[EB/OL].[2020-05-26].https://arxiv.org/pdf/1703.09507.pdfhttps://arxiv.org/pdf/1703.09507.pdf.
Ruder S. 2016. An overview of gradient descent optimization algorithms[EB/OL].[2020-05-26].https://arxiv.org/pdf/1609.04747.pdfhttps://arxiv.org/pdf/1609.04747.pdf
Shen L L, Jia X and Li Y X. 2018. Deep cross residual network for HEp-2 cell staining pattern classification. Pattern Recognition, 82:68-78[DOI:10.1016/j.patcog.2018.05.005]
Tian J X, Liu G C, Gu S S, Ju Z J, Liu J G and Gu D D. 2018. Deep learning in medical image analysis and its challenges. Acta Automatica Sinica, 44(3):401-424
田娟秀, 刘国才, 谷珊珊, 鞠忠建, 刘劲光, 顾冬冬. 2018.医学图像分析深度学习方法研究与挑战.自动化学报, 44(3):401-424 [DOI:10.16383/j.aas.2018.c170153]
Tustison N J, Avants B B, Lin Z X, Feng X, Cullen N, Mata J F, Gee J C, Altes T A, Mugler III J P and Qing K. 2019. Convolutional neural networks with template-based data augmentation for functional lung image quantification. Academic Radiology, 26(3):412-423[DOI:10.1016/j.acra.2018.08.003]
Wan L, Zeiler M, Zhang S X, LeCun Y and Fergus R. 2013. Regularization of neural networks using dropconnect. Journal of machine Learning Research, 28:1058-1066
Wan S H, Liang Y and Zhang Y. 2018. Deep convolutional neural networks for diabetic retinopathy detection by image classification. Computers and Electrical Engineering, 72:274-282[DOI:10.1016/j.compeleceng.2018.07.042]
Wang H, Wang Y T, Zhou Z, Ji X, Gong D H, Zhou J C, Li Z F and Liu W. 2018. CosFace: large margin cosine loss for deep face recognition//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE: 5265-5274[DOI:10.1109/CVPR.2018.00552http://dx.doi.org/10.1109/CVPR.2018.00552]
Wang W B, Chen D L and Dai X C. 2018. UAV aerial image recognition based on deep residual Net. Computer Science and Application, 8(10):1613-1619
王文博, 陈大雷, 戴宪策. 2018.基于深度残差网络的无人机航拍图像识别.计算机科学与应用, 8(10):1613-1619 [DOI:10.12677/CSA.2018.810177]
Wen Y D, Zhang K P, Li Z F and Qiao Y. 2016. A discriminative feature learning approach for deep face recognition//Proceedings of 14th European Conferenceon Computer Vision. Amsterdam, The Netherlands: Springer: 499-515[DOI:10.1007/978-3-319-46478-7_31http://dx.doi.org/10.1007/978-3-319-46478-7_31]
Xiao H H, Yuan C L, Feng S T, Luo Y J and Huang B S. 2019. Research progress of computer aided diagnosis in cancer based on deep learning. International Journal of Medical Radiology, 42(1):22-25, 58
肖焕辉, 袁程朗, 冯仕庭, 罗宴吉, 黄炳升. 2019.基于深度学习的癌症计算机辅助分类诊断研究进展.国际医学放射学杂志, 42(1):22-25, 58 [DOI:10.19300/j.2019.Z6366zt]
Xie H, Lei H J, He Y J and Lei B Y. 2019. Deeply supervised full convolution network for HEp-2 specimen image segmentation. Neurocomputing, 351:77-86[DOI:10.1016/j.neucom.2019.03.067]
Xu B, Wang N Y, Chen T Q and Li M. 2015. Empirical evaluation of rectified activations in convolutional network[EB/OL].[2020-05-26].https://arxiv.org/pdf/1505.00853.pdfhttps://arxiv.org/pdf/1505.00853.pdf
Xu Y F, Wang H G, Liu X and Sun W T. 2019. An improved multi-branch residual network based on random multiplier and adaptive cosine learning rate method. Journal of Visual Communication and Image Representation, 59:363-370[DOI:10.1016/j.jvcir.2019.01.030]
Yao Y J and Zhang L. 2019. Pulmonarynodule detection via hybrid loss based joint fine-tuning and multi-scale classification. Application Research of Computers, 36(9):2872-2875, 2880
姚宇瑾, 张利. 2019.基于混合损失联合调优与多尺度分类相结合的肺结节检测算法.计算机应用研究, 36(9):2872-2875, 2880 [DOI:10.19734/j.issn.1001-3695.2018.03.0153]
Zhang N, Cai Y X, Wang Y Y, Tian Y T, Wang X L and Badami B. 2020. Skin cancer diagnosis based on optimized convolutional neural network. Artificial Intelligence in Medicine, 102:#101756[DOI:10.1016/j.artmed.2019.101756]
Zhang Q Q, Wang H F, Yoon S W, Won D and Srihari K. 2019. Lung nodule diagnosis on 3D computed tomography images using deep convolutional neural networks. Procedia Manufacturing, 39:363-370[DOI:10.1016/j.promfg.2020.01.375]
Zheng G Y, Liu X B and Han G H. 2018. Survey on medical image computer aided detection and diagnosis systems. Journal of Software, 29(5):1471-1514
郑光远, 刘峡壁, 韩光辉. 2018.医学影像计算机辅助检测与诊断系统综述.软件学报, 29(5):1471-1514 [DOI:10.13328/j.cnki.jos.005519]
Zhou P, Chen H J, Yu Z K, Peng Y H, Li Y F and Yang F. 2019. Review of cross-modality medical image prediction. Acta Electronica Sinica, 47(1):220-226
周沛, 陈后金, 于泽宽, 彭亚辉, 李艳凤, 杨帆. 2019.跨模态医学图像预测综述.电子学报, 47(1):220-226 [DOI:10.3969/j.issn.0372-2112.2019.01.029]
Zhu H and Qin P L. 2019. U-Net pulmonary nodule detection algorithm based on multi-scale feature structure. Computer Engineering, 45(4):254-261
朱辉, 秦品乐. 2019.基于多尺度特征结构的U-Net肺结节检测算法.计算机工程, 45(4):254-261 [DOI:10.19678/j.issn.1000-3428.0051769]
Zou B J, Zhang Z Q, Zhu C Z, Chen C L, Liu J and Ouyang P B. 2019. Automatic screening of diabetic retinopathy based on residual network. Journal of Computer-Aided Design and Computer Graphics, 31(4):581-588
邹北骥, 张子谦, 朱承璋, 陈昌龙, 刘佳, 欧阳平波. 2019.基于残差网络的糖网病自动筛查.计算机辅助设计与图形学学报, 31(4):580-588 [DOI:10.3724/SP.J.1089.2019.17346]
相关作者
相关机构