分形曲线生成的频域方法
Fractal curve generation method based on the frequency domain
- 2020年25卷第9期 页码:1904-1914
收稿:2019-12-24,
修回:2020-3-27,
录用:2020-4-3,
纸质出版:2020-09-16
DOI: 10.11834/jig.190660
移动端阅览

浏览全部资源
扫码关注微信
收稿:2019-12-24,
修回:2020-3-27,
录用:2020-4-3,
纸质出版:2020-09-16
移动端阅览
目的
2
分形几何学的理论研究与应用实践方兴未艾,在分形的计算机生成领域,传统方法是在空间域中,通过对生成元的迭代操作而形成。为了扩展分形的生成方法,本文将频谱分析引入到分形几何中。
方法
2
正交函数系是频谱分析的核心问题之一。考虑到分形曲线是一类连续而不光滑的折线型信号,通常的三角函数(Fourier变换)、连续小波变换仅适用于光滑的对象,否则会出现所谓“Gibbs现象”;另一方面,以V-系统为代表的正交分段多项式函数系适用于表达包含间断性的对象,否则会出现信息冗余。因此,通常的正交函数系均不适合分形的频谱表达与分析。针对分形曲线的特点,本文将其视为一次样条函数,通过引入一类正交样条函数系-Franklin函数系,实现了对分形曲线的有限项精确正交表达,得到Franklin频谱,从而完成分形的时频变换。然后,对Franklin频谱系数在不同尺度上进行修改。最后,通过正交重构得到新的分形。
结果
2
对比实验验证了Franklin函数系在分形曲线频域表达方面的优越之处,它既能通过最小项数实现分形的正交表达,而且不会出现Gibbs现象。本文以von Koch曲线、Sierpinski square曲线和Hilbert曲线这3个经典分形为例,通过对Franklin谱在不同尺度上的自由调节,能够方便地生成大量形态各异的新的分形曲线。
结论
2
Franklin谱不仅能够实现对分形曲线的有限精确重构,而且还能在不同尺度上刻画分形的形态特征。基于Franklin频谱调节实现的分形生成方法,只要修改频谱就可以得到大量的新型分形曲线,而且这些分形的样式千变万化,几乎不可预测,这种分形生成方式为分形设计带来了巨大的自由空间,为分形的生成提供了新的思路与方案。
Objective
2
The theoretical research and application of fractal geometry is continuously making progress. Traditional methods are formed in the spatial domain through iterative operations on generators. To extend the fractal generation method
we introduce the spectrum analysis method into fractal geometry. In signal processing tasks
such as filtering
data compression
model editing
and object retrieval
the spectrum analysis method has been widely and successfully applied
especially in the field of computer-generated fractals. However
spectrum analysis based on orthogonal transform is rarely studied in fractal generation and analysis. One reason is the lack of a suitable orthogonal function system. We should choose to express the fractal accurately with a few orthogonal basis functions. Polygonal fractal curves should be chosen as orthogonal expressions of the same type of orthogonal function systems. From the point of view of the spline function
the polyline is a linear spline function. Therefore
we make a fractal curve on the basis of a class of one-time orthogonal spline function system (Franklin function) to obtain the Franklin spectrum. Compared with other orthogonal function systems
the Franklin spectrum has inherent advantages in the expression and generation of fractal curves.
Method
2
We first show the orthogonal decomposition and reconstruction algorithm of fractal curves under the Franklin function system. Then
with the classic von Koch snowflake curve taken as an example
the Fourier series
the V system
and the Franklin orthogonal system are compared to express the fractal curve. Lastly
the Franklin spectrum is modified
and then orthogonal reconstruction is performed to generate rich and diverse fractal curves. The advantages and characteristics of this method are compared and demonstrated. The traditional generator iteration is a process-based fractal expression method
but we express the fractal from the perspective of spectrum
which is the essential difference. One of the fundamental core issues of spectrum analysis is the choice of orthogonal function systems. Considering that the fractal curve is a continuous and unsmooth polyline type
the traditional orthogonal function system has the following two problems. On the one hand
the usual trigonometric functions (Fourier transform) and wavelet transform are only suitable for smooth objects. On the other hand
the orthogonal piecewise polynomial function system represented by the V system is suitable for continuous and discontinuous objects. Neither method is suitable for fractal spectrum analysis. Therefore
this study introduces a type of continuous orthogonal function system
i.e.
the Franklin function system. Through the orthogonal decomposition of fractal curves
the corresponding Franklin spectrum is obtained.
Result
2
We take a typical typing curve
i.e.
the von Koch curve
as an example and use the Fourier and Franklin methods to perform orthogonal decomposition and reconstruction. The characteristics of the fractal curve expression algorithm based on the Franklin function are verified. Moreover
compared with other orthogonal function systems
it emphasizes the advantage of the Franklin function system in the frequency domain representation of fractal curves. Based on the von Koch curve
Sierpinski square curve
and Hilbert curve
we use different resolutions and parameters to conduct comparative experiments. The experiments verify the superiority of the Franklin function system in the frequency domain expression of fractal curves. By freely adjusting the Franklin spectrum
many new fractal curves with different shapes can be easily generated. According to the properties of the Franklin function system (orthogonality and multiresolution)
the Franklin spectrum describes the fractal curve from the frequency domain perspective and achieves the optimum multilevel hierarchical approximation of the entire fractal curve. Low-frequency components focus on the contour information of the fractal curve
whereas high-frequency components describe its detailed information. When the Franklin spectral coefficient reaches 2
n
+1 terms
an accurate reconstruction of the fractal curve can be achieved; ordinary orthogonal function systems cannot achieve such accuracy.
Conclusion
2
We take the fractal curves of the study as an example. Classical fractal objects
such as von Koch snowflake
Siepinski carpet
and Hilbert curve
have an infinitely small-scale hierarchical structure. However
when they are stored in a computer and drawn
they can only present approximation results within a certain scale. Therefore
they are continuous but unsmooth polylines. Afterward
choosing Franklin orthogonal function systems can make proper orthogonal expressions for such objects. The Franklin function can be accurately expressed with limited orthogonal basis functions. On the one hand
Franklin functions are not smooth functions and thus can express fractal graphs well with polyline segments. On the other hand
Franklin functions are not discontinuous orthogonal function systems
and continuous functions can be expressed with a few term basis functions. This expression does not have fragility; in other words
the fractal orthogonal expression using the Franklin function does not distort the fractal curve. In general
the Franklin spectrum can not only achieve limited and accurate reconstruction of fractal curves but also describe the morphological characteristics of fractals on different scales. The fractal generation method based on Franklin spectrum adjustment provides new ideas and solutions for fractal generation.
Barseley M F. 1988. Fractal Everywhere. New York: Academic Press
Cai Z C and Chen W. 2013. Least square approximation and analysis for scattered data based on orthogonal GF system. Acta Scientiarum Naturalium Universitatis Sunyatseni, 52(5):73-77
蔡占川, 陈伟. 2013.基于正交GF系统的散乱数据拟合及分析.中山大学学报(自然科学版), 52(5):73-77
Cai Z C, Chen W, Qi D X and Tang Z S. 2009. A class of general Franklin functions and its application. Chinese Journal of Computers, 32(10):2004-2013
蔡占川, 陈伟, 齐东旭, 唐泽圣. 2009.一类新的正交样条函数——Franklin函数的推广及其应用.计算机学报, 32(10):2004-2013
Chen W, Cai Z C and Qi D X. 2015. Orthogonal Franklin moments and its application for image representation. Chinese Journal of Computers, 38(6):1140-1147
陈伟, 蔡占川, 齐东旭. 2015.一类新的正交矩-Franklin矩及其图像表达.计算机学报, 38(6):1140-1147 [DOI:10.11897/SP.J.1016.2015.01140]
Chen W and Qi D X. 2013. Polygonal approximation of digital curves based on Franklin function. Journal of Computer-Aided Design and Computer Graphics, 25(7):980-987
陈伟, 齐东旭. 2013.基于Franklin函数的数字曲线多边形逼近.计算机辅助设计与图形学学报, 25(7):980-987 [DOI:10.3969/j.issn.1003-9775.2013.07.007]
Conti C and Hormann K. 2011. Polynomial reproduction for univariate subdivision schemes of any arity. Journal of Approximation Theory, 163(4):413-437[DOI:10.1016/j.jat.2010.11.002]
Demko S, Hodges L and Naylor B. 1985. Construction of fractal objects with iterated function systems//Proceedings of the 12th Annual Conference onComputer Graphics and Interactive Techniques. Boston: ACM: 271-278[ DOI:10.1145/325165.325245 http://dx.doi.org/10.1145/325165.325245 ]
Ding W and Qi D X. 1998. Recursive refinement algorithm of fractal generation and it's application. Journal of Image and Graphics, 3(2):123-128
丁玮, 齐东旭. 1998.分形生成的递归细化算法及应用.中国图象图形学报, 3(2):123-128 [DOI:10.11834/jig.19980229]
Dremin I M. 2005. Wavelets:mathematics and applications. Physics of Atomic Nuclei, 68(3):508-520[DOI:10.1134/1.1891202]
Dyn N, Levin D and Gregory J A. 1987. A 4-point interpolatory subdivision scheme for curve design. Computer Aided Geometric Design, 4(4):257-268[DOI:10.1016/0167-8396(87)90001-X]
Falconer K J. 1985. The Geometry of Fractal Sets. Cambridge:Cambridge University Press[DOI:10.1017/CBO9780511623738]
Franklin P. 1928. A set of continuous orthogonal functions. Mathematische Annalen, 100(1):522-529[DOI:10.1007/BF01448860]
Gregory J A and Qu R B. 1996. Nonuniform corner cutting. Computer Aided Geometric Design, 13(8):763-772[DOI:10.1016/0167-8396(96)00008-8]
Hu Y, Zheng H C and Geng J. 2019. Calculation of dimensions of curves generated by subdivision schemes. International Journal of Computer Mathematics, 96(6):1278-1291[DOI:10.1080/00207160.2018.1438601]
Kaur M and Sivia J S. 2019. Minkowski, Giuseppe Peano and Koch curves based design of compact hybrid fractalantenna for biomedical applications using ANN and PSO. AEU-international Journal of Electronics and Communications, 99:14-24[DOI:10.1016/j.aeue.2018.11.005]
Li W J, Zhao H P and Shang S N. 2017. Onboard ship saliency detection algorithm based on multi-scale fractal dimension. Journal of Image and Graphics, 22(10):1447-1454
李文娟, 赵和平, 尚叔楠. 2017.多尺度分形维的星载舰船显著性检测.中国图象图形学报, 22(10):1447-1454 [DOI:10.11834/jig.160529]
Liu C K. 1982. Orthogonal Functions and Its Applications. Beijing:National Defence Industry Press
柳重堪. 1982.正交函数及其应用.北京:国防工业出版社
Liu H Y, Sui T, Xu Z and Zhu W Y. 2008. Research on periodicity of general M-J chaos-fractal images generated by Fibonacci sequence. Journal of Image and Graphics, 13(3):536-540
刘鸿雁, 隋涛, 徐喆, 朱伟勇. 2008. Fibonacci序列构造广义M-J混沌分形图谱周期性的研究.中国图象图形学报, 13(3):536-540 [DOI:10.11834/jig.20080327]
Mandelbrot B B. 1983. The Fractal Geometry of Nature. New York: Freeman
Mandelbrot B B. 1985. Self-affine fractals and fractal dimension. Physica Scripta, 32(4):257-260[DOI:10.1088/0031-8949/32/4/001]
Meyer Y. 1993. Wavelets:Algorithm and Applications. Philadelphia:SIMA Press
Mustafa G. 2017. Statistical and geometrical way of model selection for a family of subdivision schemes. Chinese Annals of Mathematics, Series B, 38(5):1077-1092[DOI:10.1007/s11401-017-1024-6]
Peitgen H O, Jürgens H and Saupe D. 2012. Chaos and Fractals:New Frontiers of Science. New York:Springer Press[DOI:10.1007/978-1-4757-4740-9]
Qi D X. 1994. Fractal and Its Computer Generation. Beijing:Science Press
齐东旭. 1994.分形及其计算机生成.北京:科学出版社
Qi D X, Song R X and Li J. 2011. Non-Continuous Orthogonal Functions. Beijing:Science Press
齐东旭, 宋瑞霞, 李坚. 2011.非连续正交函数-U-系统、V-系统、多小波及其应用.北京:科学出版社
Siddiqi S S, Idrees U and Rehan K. 2014. Generation of fractal curves and surfaces using ternary 4-point interpolatory subdivision scheme. Applied Mathematics and Computation, 246:210-220[DOI:10.1016/j.amc.2014.07.078]
Smith A R. 1984. Plants, fractals, and formal languages//Proceedings of the 11th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM: 1-10[ DOI:10.1145/964965.808571 http://dx.doi.org/10.1145/964965.808571 ]
Song R X, Zhu J W and Wang X C. 2016. Spectrum analysis of fractals based on orthogonal decomposition. Journal of Computer-Aided Design and Computer Graphics, 28(3):488-497
宋瑞霞, 朱建旺, 王小春. 2016.分形的正交频谱分析.计算机辅助设计与图形学学报, 28(3):488-497 [DOI:10.3969/j.issn.1003-9775.2016.03.015]
Xiong G Q and Qi D X. 2010. Algorithm of image encoding based on U-orthogonal transform. Journal of Image and Graphics, 15(11):1569-1577
熊刚强, 齐东旭. 2010.基于U-正交变换的图像编码算法.中国图象图形学报, 15(11):1569-1577 [DOI:10.11834/jig.20101113]
相关文章
相关作者
相关机构
京公网安备11010802024621