不同类型高度图控制浅浮雕模型生成方法
Bas-relief generation controlled by different height maps
- 2020年25卷第12期 页码:2647-2655
收稿:2019-12-02,
修回:2020-4-3,
录用:2020-4-10,
纸质出版:2020-12-16
DOI: 10.11834/jig.190630
移动端阅览

浏览全部资源
扫码关注微信
收稿:2019-12-02,
修回:2020-4-3,
录用:2020-4-10,
纸质出版:2020-12-16
移动端阅览
目的
2
数字浅浮雕是在平面载体上塑造高低起伏形象的一种造型艺术,具有独特的结构及视觉效果,应用场景极为广泛。为了增加数字浮雕设计的多样性,实现浮雕的风格化应用,提出一种基于高度图的浅浮雕模型生成方法。
方法
2
引入掩模理论,利用掩模操作对待处理的图像进行处理,融合图像处理技术,控制所要生成浮雕不同部位的高度,得到控制浮雕生成效果的高度图,借鉴已有的浅浮雕模型生成方法,利用基于高斯混合模型的滚动引导法向滤波(Gaussian mixture model based rolling guidance normal filtering,GRNF)进行法向分解,基于SfG(surface from gradients)的局部调整和全局重建的方法进行曲面重建,采用拉普拉斯算子及双边滤波器进行去噪平滑处理,最终生成不同高度风格的浅浮雕模型。
结果
2
实验结果表明,本文方法能够生成带有不同视觉效果的浅浮雕模型,通过对细节特征及结构特征相关参数的调整,均能够生成轮廓清晰、细节丰富的浅浮雕模型。
结论
2
本文提出的基于高度图的浅浮雕模型生成方法能够为浅浮雕的多样化设计提供新的思路和方法,在家居装饰行业中有重要的应用价值。
Objective
2
Digital bas-relief is a special model that is either raised or lowered and is usually attached to a planar background. The spatial structure of a digital bas-relief lies between a 3D shape and a flat shape. Despite taking up limited space
a bas-relief contains a rich amount of details. Given its unique spatial structure and visual effects
a bas-relief can be applied across various fields. Various bas-relief models have been applied in designing ceramic vessels
wooden carvings
and coin badges
among others. Given its effective space utilization and excellent visual presentation
the bas-relief has been increasingly applied in decoration. However
with the continuous development of digital technology and 3D printing
the demand for and the requirements of bas-relief generation have become increasingly diverse. To enhance the diversity of digital bas-relief design and realize its stylized application
generating a bas-relief model based on height maps has been examined in the literature. Designing and adjusting the height map of relief works can help obtain highly efficient and intuitive embossed decorated models.
Method
2
By introducing masks and integrating image processing technology
a height map is generated to control the relief effect
and the existing bas-relief model generation method is adopted to generate bas-relief models with different styles. Masks have an important application value in the field of image processing. A mask is used to control the height of the local area and different areas of the relief to obtain different height information. Through this mask
a normal map with different height information can be obtained and used as input for the bas-relief model generation algorithm. This algorithm normalizes the vectors of different height information. Normal information processing offers two key advantages. On the one hand
transforming normal information can directly reflect surface variation characteristics
which play important roles in the later stages of geometric reconstruction. On the other hand
the depth value discontinuity caused by occlusion does not pose a problem because normal information ignores the differences in distance. In this paper
a Gaussian mixture model based rolling guidance normal filtering (GRNF) is applied in a normal decomposition operation. This model involves two steps. First
by using the rolling guide normal filtering algorithm
a rough structural side layer is decomposed from the original normal layer
and then the original normal layer and rough structure are subtracted to obtain a rough detail layer. Second
by using the expectation-maximization algorithm to solve the final parameter estimated by the Gaussian mixture model
the remaining detail and structural layers that contained tailed information can be separated in the coarse detail layer. After passing the filter based on the rolling guide
a structural layer with the overall contour feature of the relief model and a detail layer that retains the detailed feature information can be obtained. Finally
the surface of the decomposed detail and structural layers is reconstructed. Surface construction based on surface-from-gradients (SfG) local adjustment and global reconstruction is applied to transform the continuous surface reconstruction into a discrete space
and the surface reconstruction problem is effectively solved via least squares optimization. After obtaining the geometric model via surface reconstruction
some noise or interference can influence the visual effect of the bas-relief model. Laplacian smoothing and bilateral filters are then used for smoothing and denoising to obtain the final bas-relief model.
Result
2
Mask processing is used to control the height of the relief model and ensure the diversity of relief model generation. A model that references the existing bas-relief model generation algorithm shows a better generation effect. By setting the detail parameters of the adjustment model
the structural and flatness parameters of the overall relief are effectively controlled
and the bas-relief model can be used for diversification. A bas-relief model with different visual effects is eventually obtained. The experiment lists some elements
including pillows and tables
in the home decoration industry. The bas-relief models generated by masking also have unique characteristics and can be applied in decorating vases and walls. By adjusting their detail and structural features
bas-relief models can meet diverse needs
have clear outlines
and rich amounts of detail.
Conclusion
2
Height-map-based bas-relief model generation method can benefit the design of bas-relief model sand help meet the demands in home decoration. Results of this study can be combined with the existing 3D printing technology and applied in the production and processing of embossed products.
Alexa M and Matusik W. 2010. Reliefs as images. ACM Transactions on Graphics, 29(4):# 60[DOI:10.1145/1778765.1778797]
Chen K X, Liu X and Wang D. 2018. An algorithm for optimized edge detection based on image mask and Hit-miss transform. Journal of Xi'an University of Technology, 34(1):116-121
陈恺煊, 刘昕, 王咚. 2018.基于图像掩模和击中击不中变换的优化边缘提取算法.西安理工大学学报, 34(1):116-121[DOI:10.19322/j.cnki.issn.1006-4710.2018.01.019]
Cignoni P, Montani C and Scopigno R. 1997. Computer-assisted generation of bas- and high-reliefs. Journal of Graphics Tools, 2(3):15-28[DOI:10.1080/10867651.1997.10487476]
Fattal R, Lischinski D and Werman M. 2002. Gradient domain high dynamic range compression//Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques. Texas, San Antonio: ACM: 249-256[ DOI: 10.1145/566570.566573 http://dx.doi.org/10.1145/566570.566573 ]
He J S, Shi B P and Liu M G. 2007. A novel artistic image generation technique: making relief effects through evolution//Proceedings of the 2nd International Symposium on Intelligence Computation and Applications. Wuhan: Springer: 591-600[ DOI: 10.1007/978-3-540-74581-5_65 http://dx.doi.org/10.1007/978-3-540-74581-5_65 ]
Horn B K P and Brooks M J. 1986. The variational approach to shape from shading. Computer Vision Graphics and Image Processing, 33(2):174-208[DOI:10.1016/0734-189X(86)90114-3]
Ji Z P, Ma W Y and Sun X F. 2014a. Bas-relief modeling from normal images with intuitive styles. IEEE Transactions on Visualization and Computer Graphics, 20(5):675-685[DOI:10.1109/TVCG.2013.267]
Ji Z P, Sun X F, Li S and Wang Y G. 2014b. Real-time bas-relief generation from depth-and-normal maps on GPU. Computer Graphics Forum, 33(5):75-83[DOI:10.1111/cgf.12433]
Kerber J, Belyaev A and Seidel H P. 2007. Feature preserving depth compression of range images//Proceedings of the 23rd Spring Conference on Computer Graphics. Budmerice, Slovakia: ACM: 101-105[ DOI: 10.1145/2614348.2614363 http://dx.doi.org/10.1145/2614348.2614363 ]
Kerber J, Tevs A, Belyaev A, Zayer R and Seidel H P. 2010. Real-time generation of digital bas-reliefs. Computer-Aided Design and Applications, 7(4):465-478[DOI:10.3722/cadaps.2010.465-478]
Kerber J, Wang M L, Chang J, Zhang J J, Belyaev A and Seidel H P. 2012. Computer assisted relief generation-a survey. Computer Graphics Forum, 31(8):2363-2377[DOI:10.1111/j.1467-8659.2012.03185.x]
Li B, Liu S L, Zhang L Y and Xu X Y. 2011. Bas-relief generation algorithm based on Laplace operator decomposition of 3D model. Computer Integrated Manufacturing Systems, 17(5):946-951
李博, 刘胜兰, 张丽艳, 徐小燕. 2011.基于三维模型拉普拉斯分解的浮雕生成算法.计算机集成制造系统, 17(5):946-951[DOI:10.13196/j.cims.2011.05.52.lib.007]
Li B, Liu S L and Zhang L Y. 2012. Bas-relief generation using manifold harmonics analysis. Journal of Computer-Aided Design and Computer Graphics, 24(2):252-261
李博, 刘胜兰, 张丽艳. 2012.基于流形调和变换的浅浮雕生成算法.计算机辅助设计与图形学学报, 24(2):252-261[DOI:10.3969/j.issn.1003-9775.2012.02.019]
Li Z W, Wang S, Yu J H and Ma K L. 2012. Restoration of brick and stone relief from single rubbing images. IEEE Transactions on Visualization and Computer Graphics, 18(2):177-187[DOI:10.1109/TVCG.2011.26]
Liu Y J, Ji Z P, Liu Z and Wu X Y. 2016. Stylized design of bas-relief based on normal field. Journal of Computer-Aided Design and Computer Graphics, 28(12):2120-2127
刘玉洁, 计忠平, 刘真, 吴向阳. 2016.基于法向域的浅浮雕风格化设计.计算机辅助设计与图形学学报, 28(12):2120-2127[DOI:10.3969/j.issn.1003-9775.2016.12.011]
Miao Y W, Sun Y L, Fang X D, Chen J Z, Zhang X D and Pajarola R. 2018. Relief generation from 3D scenes guided by geometric texture richness. Computational Visual Media, 4(3):209-221[DOI:10.1007/s41095-018-0111-2]
Sohn B S. 2017. Ubiquitous creation of bas-relief surfaces with depth-of-field effects using smartphones. Sensors, 17(3):#572[DOI:10.3390/s17030572]
Sun X F, Rosin P L, Martin R R and Langbein F C. 2009. Bas-relief generation using adaptive histogram equalization. IEEE Transactions on Visualization and Computer Graphics, 15(4):642-653[DOI:10.1109/TVCG.2009.21]
To H T and Sohn B S. 2017. Bas-relief generation from face photograph based on facial feature enhancement. Multimedia Tools and Applications, 76(8):10407-10423[DOI:10.1007/s11042-016-3924-y]
Wang M L, Chang J, Pan J J and Zhang J J. 2010. Image-based bas-relief generation with gradient operation//Proceedings of the 11th IASTED International Conference on Computer Graphics and Imaging. Innsbruck: Acta Press: 87-92[ DOI: 10.2316/P.2010.679-040 http://dx.doi.org/10.2316/P.2010.679-040 ]
Wang Q M and Zhao L. 2017. Image foreground extraction based on Poisson. Computer Programming Skills&Maintenance, (5): 81-83
王庆敏, 赵亮. 2017.利用Poisson方法实现图像前景提取.电脑编程技巧与维护, (5): 81-83[ DOI: 10.3969/j.issn.1006-4052.2017.05.031 http://dx.doi.org/10.3969/j.issn.1006-4052.2017.05.031 ]
Wei M Q, Tian Y, Pang W M, Wang C C L, Pang M Y, Wang J, Qin J and Heng P A. 2019. Bas-relief modeling from normal layers. IEEE Transactions on Visualization and Computer Graphics, 25(4):1651-1665[DOI:10.1109/TVCG.2018.2818146]
Weyrich T, Deng J, Barnes C, Rusinkiewicz S and Finkelstein A. 2007. Digital bas-relief from 3D scenes. ACM Transactions on Graphics, 26(3):#32[DOI:10.1145/1276377.1276417]
Wu J, Martin R R, Rosin P L, Sun X F, Lai Y K, Liu Y H and Wallraven C. 2014. Use of non-photorealistic rendering and photometric stereo in making bas-reliefs from photographs. Graphical Models, 76(4):202-213[DOI:10.1016/j.gmod.2014.02.002]
Wu T P, Sun J, Tang C K and Shum H Y. 2008. Interactive normal reconstruction from a single image. ACM Transactions on Graphics, 27(5):#119[DOI:10.1145/1457515.1409072]
Xie W Y, Zhang Y B, Wang C C L and Chung R C K. 2014. Surface-from-gradients: an approach based on discrete geometry processing. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE: 2203-2210[ DOI: 10.1109/CVPR.2014.282 http://dx.doi.org/10.1109/CVPR.2014.282 ]
Zeng Q, Martin R R, Wang L, Quinn J A, Sun Y H and Tu C H. 2014. Region-based bas-relief generation from a single image. Graphical Models, 76(3):140-151[DOI:10.1016/j.gmod.2013.10.001]
Zhang Q, ShenX Y, Li X and Jia J Y. 2014. Rolling guidance filter//Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland: Springer: 815-830[ DOI: 10.1007/978-3-319-10578-9_53 http://dx.doi.org/10.1007/978-3-319-10578-9_53 ]
Zhang Y W, Chen Y Z, Liu H, Ji Z P and Zhang C M. 2018. Modeling Chinese calligraphy reliefs from one image. Computers and Graphics, 70:300-306[DOI:10.1016/j.cag.2017.07.022]
Zhang Y W, Zhou Y Q, Zhao X F and Yu G. 2013. Real-time bas-relief generation from a 3D mesh. Graphical Models, 75(1):2-9[DOI:10.1016/j.gmod.2012.10.003]
Zhu Y H, Liu B and Zhang L B. 2018. Algorithm and its implementation of bas-relief generation using image overlay. Journal of Huaqiao University (Natural Science), 39(2):172-178
朱钰恒, 刘斌, 张凌搏. 2018.采用叠加图像的浅浮雕生成算法及实现.华侨大学学报(自然科学版), 39(2):172-178[DOI:10.11830/ISSN.1000-5013.201711039]
相关文章
相关作者
相关机构
京公网安备11010802024621