神经纤维跟踪算法研究进展
Research progress of neural fiber tracking
- 2020年25卷第8期 页码:1513-1528
收稿:2019-10-17,
修回:2020-1-8,
录用:2020-1-15,
纸质出版:2020-08-16
DOI: 10.11834/jig.190519
移动端阅览

浏览全部资源
扫码关注微信
收稿:2019-10-17,
修回:2020-1-8,
录用:2020-1-15,
纸质出版:2020-08-16
移动端阅览
神经纤维跟踪通过整合纤维局部结构方向信息,可以描绘出具有解剖学意义的空间纤维结构,是扩散磁共振成像的关键步骤,对临床医学与神经科学等有着重大意义。然而,大量的研究和临床应用表明,目前的神经纤维跟踪算法重构出了大量虚假纤维而备受质疑。为了给研究者和临床医生选择神经纤维跟踪算法提供依据,本文深入分析了当前的主要跟踪算法并进行定量评估与定性比较。从确定型、概率型和全局优化等方法详细介绍各典型跟踪算法;利用Fibercup和国际医学磁共振学会(International Society for Magnetic Resonance in Medicine,ISMRM)2015挑战数据进行实验,定量对比9种常用算法的优缺点,并分析了这些算法在实际临床数据的成像结果及其面临的挑战;结合实验结果与算法理论分析各算法的内在联系与区别。不同跟踪算法在效果上有着较大的差异,确定型算法在描绘主要纤维结构上更为明显,概率型算法描绘的纤维分布更为全面,全局优化算法的纤维轨迹更符合全局数据而避免了误差累积问题。纤维跟踪对于分析人脑神经纤维连接具有很高的研究价值和应用价值。不同类型的算法有着各自的优缺点,目前并没有一种跟踪算法可以摒弃其他算法缺点而结合所有优点。另外目前纤维跟踪算法的结果与实际情况均有着一定差距,如何描绘出更为精确的纤维轨迹仍是一个具有挑战性的问题。
Diffusion magnetic resonance imaging is currently the only non-invasive white matter fiber imaging method that provides a new tool for understanding the fiber structure of thee living brain and shows great significance in the fields of clinical medicine
disease analysis
and neuroscience. The diffusion of water molecules in the brain due to the influence of nerve fibers exhibits anisotropy. Diffusion magnetic resonance imaging indirectly characterizes the local structural information of a fiber by measuring the water molecule diffusion attenuation signal of each voxel. Fiber tracking is an important step in diffusion magnetic resonance imaging where the spatial orientation information of voxels is integrated to depict anatomically significant fiber space structures. Many studies on the white fiber tracking algorithm have been published over the past two decades since its introduction in 1998. However
a large number of studies and clinical applications have shown that this tracking algorithm reconstructs a large number of false fibers. To provide researchers with a systematic understanding of the field and to provide clinicians with a basis for selecting fiber tracking algorithms
this paper quantitatively evaluates and qualitatively compares nine of the most commonly used algorithms. The typical algorithms are introduced in detail from the perspectives of deterministic
probabilistic
and global optimization. The deterministic algorithm focuses on the streamlines tracking and fiber assignment by continuous tracking (FACT) algorithms. The probabilistic tracking algorithm focuses on the Bayesian probability tracking framework
the Bayesian-framework-based particle filtering tractography (PFT)
and unscented Kalman filter (UKF). Meanwhile
the global tracking algorithm focuses on the graph-based fiber tracking and Gibbs tracking algorithms and introduces the anatomically constrained tractography (ACT) algorithm-which is commonly used in fiber tracking-and the fiber tracking algorithm combined with machine learning. The simulated Fibercup and International Society for Magnetic Resonance in Medicine(ISMRM) 2015 challenge data are then used to test and compare the results of the nine algorithms (TensorDet
SD_Stream
FACT
iFOD2
ACT_iFOD2
PFT
UKF
Gibbs
and MLBT(machine learning based tractograph)) and to calculate the Tractometer quantitative indicators of their results. The advantages and disadvantages of these algorithms are then determined
and clinical data are used for experimental verification. The intrinsic connection and differences among these algorithms are then analyzed by combining the experimental results with algorithm theory. The deterministic tracking algorithm selects the only largest possible direction for fiber tracking at each step. This algorithm is simple and easy to implement and can quickly obtain the fiber tracking result. However
the local direction of the fiber caused by the noise of the image voxel is inaccurate and further leads to deterministic tracking. Meanwhile
the probabilistic tracking algorithm selects the tracking direction of the fiber from its probability distribution in the local direction and produces a highly comprehensive fiber tracking result that can describe the complex fiber structure region. However
sampling from the probability distribution of the local direction of the fiber produces a large number of pseudofibers and subsequently produces confusing imaging results. The probabilistic fiber tracking based on the Bayesian framework calculates the posterior probability of the fiber distribution and samples the fiber tracking direction from the posterior probability
thereby effectively reducing the number of pseudofibers. The global fiber tracking algorithm is optimized from a global perspective to obtain the fiber trajectory that is most suitable for the global diffusion magnetic resonance imaging(dMRI) signal in order to avoid the cumulative error of the deterministic and probabilistic tracking algorithms. However
while the main structure of the fiber tracking results is obvious
their detailed structure is imperceptible. The calculation results also cannot guarantee convergence and require a large amount of calculations
which is not conducive to practical clinical application. The ACT algorithm is mainly applied as a screening mechanism for the fiber results and needs to be combined with other fiber tracking algorithms to reduce its error fiber ratio. The results have varying degrees of impact on subsequent fiber tracking algorithms based on the accuracy of the ACT step results. The machine learning algorithm guides the tracking of fiber trajectories through a random forest classifier generated via specimen training. However
the current machine learning algorithm only post-processes the fiber tracking results and needs to be trained with the tracking results of other algorithms. In this case
the fiber tracking results are greatly influenced by the training specimen. Fiber tracking has high research and application value for analyzing human brain nerve fiber connections. Different algorithms for fiber tracking have their own advantages and disadvantages. At present
a tracking algorithm that can address the disadvantages and combine the advantages of other algorithms is yet to be devised. The results of the proposed fiber tracking algorithm also show a certain gap from the actual situation
and drawing a highly accurate fiber trajectory remains a challenge.
Alexander D C and Barker G J. 2005. Optimal imaging parameters for fiber-orientation estimation in diffusion MRI. NeuroImage, 27(2):357-367[DOI:10.1016/j.neuroimage.2005.04.008]
Alexander D C, Hubbard P L, Hall M G, Moore E A, Ptito M, Parker G J M and Dyrby T B. 2010. Orientationally invariant indices of axon diameter and density from diffusion MRI. NeuroImage, 52(4):1374-1389[DOI:10.1016/j.neuroimage.2010.05.043]
Basser P J, Mattiello J and Lebihan D. 1994a. Estimation of the effective self-diffusion Tensor from the NMR spin echo. Journal of Magnetic Resonance, Series B, 103(3):247-254[DOI:10.1006/jmrb.1994.1037]
Basser P J, Mattiello J and LeBihan D. 1994b. MR diffusion tensor spectroscopy and imaging. Biophysical Journal, 66(1):259-267[DOI:10.1016/S0006-3495(94)80775-1]
Basser P J. 1998. Fiber-tractography via diffusion tensor MRI (DT-MRI)[EB/OL].[2019-10-02] . https://cds.ismrm.org/ismrm-1998/PDF5/p1226.pdf https://cds.ismrm.org/ismrm-1998/PDF5/p1226.pdf
Basser P J, Pajevic S, Pierpaoli C, Duda J and Aldroubi A. 2000. In vivo fiber tractography using DT-MRI data. Magnetic Resonance in Medicine, 44(4):625-632
Behrens T E J, Berg H J, Jbabdi S, Rushworth M F S and Woolrich M W. 2007. Probabilistic diffusion tractography with multiple fibre orientations:what can we gain? NeuroImage, 34(1):144-155[DOI:10.1016/j.neuroimage.2006.09.018]
Behrens T E J, Woolrich M W, Jenkinson M, Johansen-Berg H, Nunes R G, Clare S, Matthews P M, Brady J M and Smith S M. 2003. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magnetic Resonance in Medicine, 50(5):1077-1088[DOI:10.1002/mrm.10609]
Caan M W A. 2016. DTI Analysis methods: fibre tracking and connectivity. Van Hecke W, Emsell L, Sunaert S, eds. Diffusion Tensor Imaging. New York: Springer: 205-228[ DOI: 10.1007/978-1-4939-3118-7_11 http://dx.doi.org/10.1007/978-1-4939-3118-7_11 ]
Chao Y P, Chen J H, Cho K H, Yeh C H, Chou K H and Lin C P. 2008. A multiple streamline approach to high angular resolution diffusion tractography. Medical Engineering and Physics, 30(8):989-996[DOI:10.1016/j.medengphy.2008.01.010]
Chao Y P, Yang C Y, Cho K H, Yeh C H, Chou K H, Chen J H and Lin C P. 2007. Probabilistic anatomical connection derived from QBI with MFACT approach//Proceedings of 2007 Joint Meeting of the 6th International Symposium on Noninvasive Functional Source Imaging of the Brain and Heart and the International Conference on Functional Biomedical Imaging. Hangzhou: IEEE: 101-104[ DOI: 10.1109/NFSI-ICFBI.2007.4387698 http://dx.doi.org/10.1109/NFSI-ICFBI.2007.4387698 ]
Christiaens D, Reisert M, Dhollander T, Sunaert S, Suetens P and Maes F. 2015. Global tractography of multi-shell diffusion-weighted imaging data using a multi-tissue model. NeuroImage, 123:89-101[DOI:10.1016/j.neuroimage.2015.08.008]
Conturo T E, Lori N F, Cull T S, Akbudak E, Snyder A Z, Shimony J S, McKinstry R C, Burton H and Raichle M E. 1999. Tracking neuronal fiber pathways in the living human brain//Proceedings of the National Academy of Sciences of the United States of America, 96(18): 10422-10427[ DOI: 10.1073/pnas.96.18.10422 http://dx.doi.org/10.1073/pnas.96.18.10422 ]
Côté M A, Girard G, Boré A, Garyfallidis E, Houde J C and Descoteaux M. 2013. Tractometer:towards validation of tractography pipelines. Medical Image Analysis, 17(7):844-857[DOI:10.1016/j.media.2013.03.009]
Duffau H. 2014. The dangers of magnetic resonance imaging diffusion tensor tractography in brain surgery. World Neurosurgery, 81(1):56-58[DOI:10.1016/j.wneu.2013.01.116]
Feng Y J, Wang Z J, Zhang G J and Yu L. 2012. Global white matter tractography using swarm optimization. Journal of Image and Graphics, 17(10):1312-1318
冯远静, 王哲进, 张贵军, 俞立. 2012.全局脑白质纤维群智能跟踪算法.中国图象图形学报, 17(10):1312-1318[DOI:10.11834/jig.20121017]
Feng Y J, Wu Y, Rathi Y and Westin C F. 2015. Sparse deconvolution of higher order tensor for fiber orientation distribution estimation. Artificial Intelligence in Medicine, 65(3):229-238[DOI:10.1016/j.artmed.2015.09.004]
Fillard P, Poupon C and Mangin J F. 2009a. A novel global tractography algorithm based on an adaptive spin glass model//Proceedings of the 12th International Conference on Medical Image Computing and Computer-Assisted Intervention. London: Springer: 927-934[ DOI: 10.1007/978-3-642-04268-3_114 http://dx.doi.org/10.1007/978-3-642-04268-3_114 ]
Fillard P, Poupon C and Mangin J F. 2009b. Spin tracking:a novel global tractography algorithm. NeuroImage, 47(S1):S127[DOI:10.1016/S1053-8119(09)71230-3]
Friman O, Farneback G and Westin C F. 2006. A Bayesian approach for stochastic white matter tractography. IEEE Transactions on Medical Imaging, 25(8):965-978[DOI:10.1109/TMI.2006.877093]
Gao Y R, Bai H and Bao X D. 2007. Advanced fiber tracking algorithm by vector selection criterion in DTI images. Journal of Biomedical Engineering Research, 26(4):335-338
高玉蕊, 白衡, 鲍旭东. 2007.基于向量选择的神经纤维跟踪改进算法.生物医学工程研究, 26(4):335-338[DOI:10.3969/j.issn.1672-6278.2007.04.009]
Garyfallidis E, Brett M, Amirbekian B, Rokem A, van der Walt S, Descoteaux M, Nimmo-Smith I and Contributors D. 2014. Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 8:#8[DOI:10.3389/fninf.2014.00008]
Ghosh A and Deriche R. 2015. A survey of current trends in diffusion MRI for structural brain connectivity. Journal of Neural Engineering, 13(1):011001[DOI:10.1088/1741-2560/13/1/011001]
Girard G, Whittingstall K, Deriche R and Descoteaux M. 2014. Towards quantitative connectivity analysis:reducing tractography biases. NeuroImage, 98:266-278[DOI:10.1016/j.neuroimage.2014.04.074]
Hu X C, Zhang S J, Han Y and Zheng X L. 2017. Application of neuronavigation with diffusion tensor tractography in surgery for tumor near eloquent brain area. Chinese Journal of Minimally Invasive Neurosurgery, 22(3):119-122
胡先超, 张少军, 韩易, 郑夏林. 2017. DTT成像联合神经导航在脑功能区肿瘤手术中的应用.中国微侵袭神经外科杂志, 22(3):119-122[DOI:10.11850/j.issn.1009-122X.2017.03.007]
Iturria-Medina Y, Canales-Rodríguez E J, Melie-García L, Valdés-Hernández P A, Martínez-Montes E, Alemán-Gómez Y and Sánchez-Bornot J M. 2007. Characterizing brain anatomical connections using diffusion weighted MRI and graph theory. NeuroImage, 36(3):645-660[DOI:10.1016/j.neuroimage.2007.02.012]
Jbabdi S, Woolrich M W, Andersson J L R and Behrens T E J. 2007. A Bayesian framework for global tractography. NeuroImage, 37(1):116-129[DOI:10.1016/j.neuroimage.2007.04.039]
Jeurissen B, Descoteaux M, Mori S and Leemans A. 2019. Diffusion MRI fiber tractography of the brain. NMR in Biomedicine, 32(4):e3785[DOI:10.1002/nbm.3785]
Jiang W X, Shi F, Liu H S, Li G, Ding Z X, Shen H, Shen C, Lee S W, Hu D W, Wang W and Shen D G. 2017. Reduced white matter integrity in antisocial personality disorder:a diffusion tensor imaging study. Scientific Reports, 7:#43002[DOI:10.1038/srep43002]
Kim K H, Ronen I, Formisano E, Goebel R, Ugurbil K and Kim D S. 2004. Robust fiber tracking method by vector selection criterion in diffusion tensor images//Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Francisco: IEEE: 1080-1083[ DOI: 10.1109/IEMBS.2004.1403351 http://dx.doi.org/10.1109/IEMBS.2004.1403351 ]
Kreher B W, Mader I and Kiselev V G. 2008. Gibbs tracking:a novel approach for the reconstruction of neuronal pathways. Magnetic Resonance in Medicine, 60(4):953-963[DOI:10.1002/mrm.21749]
Lazar M and Alexander A L. 2003. An error analysis of white matter tractography methods:synthetic diffusion tensor field simulations. NeuroImage, 20(2):1140-1153[DOI:10.1016/S1053-8119(03)00277-5]
Lazar M, Weinstein D M, Tsuruda J S, Hasan K M, Arfanakis K, Meyerand M E, Badie B, Rowley H A, Haughton V, Field A and Alexander A L. 2003. White matter tractography using diffusion tensor deflection. Human Brain Mapping, 18(4):306-321[DOI:10.1002/hbm.10102]
Lazar M. 2010. Mapping brain anatomical connectivity using white matter tractography. NMR in Biomedicine, 23(7):821-835[DOI:10.1002/nbm.1579]
Li W, Liu J, Skidmore F, Liu Y, Tian J and Li K. 2010. White matter microstructure changes in the thalamus in Parkinson disease with depression:a diffusion tensor MR imaging study. American Journal of Neuroradiology, 31(10):1861-1866[DOI:10.3174/ajnr.A2195]
Liu C L, Bammer R, Acar B and Moseley M E. 2004. Characterizing non-Gaussian diffusion by using generalized diffusion tensors. Magnetic Resonance in Medicine, 51(5):924-937[DOI:10.1002/mrm.20071]
Malcolm J G, Shenton M E and Rathi Y. 2010. Filtered multitensor tractography. IEEE Transactions on Medical Imaging, 29(9):1664-1675[DOI:10.1109/TMI.2010.2048121]
Mangin J F, Fillard P, Cointepas Y, Le Bihan D, Frouin V and Poupon C. 2013. Toward global tractography. NeuroImage, 80:290-296[DOI:10.1016/j.neuroimage.2013.04.009]
Mori S, Crain B J, Chacko V P and Van Zijl P C M. 1999. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annals of Neurology, 45(2):265-269
Mori S and Van Zijl P C M. 2002. Fiber tracking:principles and strategies-a technical review. NMR in Biomedicine, 15(7/8):468-480[DOI:10.1002/nbm.781]
Morris D M, Embleton K V and Parker G J M. 2008. Probabilistic fibre tracking:differentiation of connections from chance events. NeuroImage, 42(4):1329-1339[DOI:10.1016/j.neuroimage.2008.06.012]
Moseley M E, Cohen Y, Kucharczyk J, Mintorovitch J, Asgari H S, Wendland M F, Tsuruda J and Norman D. 1990. Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology, 176(2):439-445[DOI:10.1148/radiology.176.2.2367658]
Neher P F, Côté M A, Houde J C, Descoteaux M and Maier-Hein K H. 2017. Fiber tractography using machine learning. NeuroImage, 158:417-429[DOI:10.1016/j.neuroimage.2017.07.028]
Nguyen-Thanh T, Reisert M, Anastasopoulos C, Hamzei F, Reithmeier T, Vry M S, Kiselev V G, Weyerbrock A and Mader I. 2013. Global tracking in human gliomas:a comparison with established tracking methods. Clinical Neuroradiology, 23(4):263-275[DOI:10.1007/s00062-013-0198-x]
Poulin P, CôtéM A, Houde J C, Petit L, Neher P F, Maier-Hein K H, Larochelle H and Descoteaux M. 2017. Learn to track: deep learning for tractography//Proceedings of the 20th International Conference on Medical Image Computing and Computer-Assisted Intervention. Canada: Springer: 540-547[ DOI: 10.1007/978-3-319-66182-7_62 http://dx.doi.org/10.1007/978-3-319-66182-7_62 ]
Reisert M, Mader I, Anastasopoulos C, Weigel M, Schnell S and Kiselev V. 2011. Global fiber reconstruction becomes practical. NeuroImage, 54(2):955-962[DOI:10.1016/j.neuroimage.2010.09.016]
Rokem A, Takemura H, Bock A S, Scherf K S, Behrmann M, Wandell B A, Fine I, Bridge H and Pestilli F. 2017. The visual white matter:the application of diffusion MRI and fiber tractography to vision science. Journal of Vision, 17(2):#4[DOI:10.1167/17.2.4]
Schilling K, Gao Y R, Janve V, Stepniewska I, Landman B A and Anderson A W. 2018. Confirmation of a gyral bias in diffusion MRI fiber tractography. Human Brain Mapping, 39(3):1449-1466[DOI:10.1002/hbm.23936]
Smith R E, Tournier J D, Calamante F and Connelly A. 2012. Anatomically-constrained tractography:improved diffusion MRI streamlines tractography through effective use of anatomical information. NeuroImage, 62(3):1924-1938[DOI:10.1016/j.neuroimage.2012.06.005]
Tang Y C, Sun W, Toga A W, Ringman J M and Shi Y G. 2018. A probabilistic atlas of human brainstem pathways based on connectome imaging data. NeuroImage, 169:227-239[DOI:10.1016/j.neuroimage.2017.12.042]
Thomas C, Ye F Q, Irfanoglu M O, Modi P, Saleem K S, Leopold D A and Pierpaoli C. 2014. Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proceedings of the National Academy of Sciences of the United States of America, 111(46):16574-16579[DOI:10.1073/pnas.1405672111]
Tournier J D, Calamante F and Connelly A. 2007. Robust determination of the fibre orientation distribution in diffusion MRI:non-negativity constrained super-resolved spherical deconvolution. NeuroImage, 35(4):1459-1472[DOI:10.1016/j.neuroimage.2007.02.016]
Tournier J D, Calamante F and Connelly A. 2012. MRtrix:diffusion tractography in crossing fiber regions. International Journal of Imaging Systems and Technology, 22(1):53-66[DOI:10.1002/ima.22005]
Tuch D S, Reese T G, Wiegell M R, Makris N, Belliveau J W and Wedeen V J. 2002. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magnetic Resonance in Medicine, 48(4):577-582[DOI:10.1002/mrm.10268]
Tuch D S, Reese T G, Wiegell M R and Wedeen V J. 2003. Diffusion MRI of complex neural architecture. Neuron, 40(5):885-895[DOI:10.1016/S0896-6273(03)00758-X]
Tuch D S. 2004. Q-ball imaging. Magnetic Resonance in Medicine, 52(6):1358-1372[DOI:10.1002/mrm.20279]
Weinstein D, Kindlmann G and Lundberg E. 1999. Tensorlines: advection-diffusion based propagation through diffusion tensor fields//Proceedings of Visualization'99. Francisco: IEEE: 249-530[ DOI: 10.1109/VISUAL.1999.809894 http://dx.doi.org/10.1109/VISUAL.1999.809894 ]
Wu Y, Feng Y J, Li F and Gao C F. 2015. A novel fiber orientation distribution reconstruction method based on dictionary basis function framework. Chinese Journal of Biomedical Engineering, 34(3):297-307
吴烨, 冯远静, 李斐, 高成锋. 2015.基于字典基函数框架的纤维方向分布模型重建.中国生物医学工程学报, 34(3):297-307[DOI:10.3969/j.issn.0258-8021.2015.03.006]
Wu Y, Feng Y J, Shen D G and Yap P T. 2018a. A multi-tissue global estimation framework for asymmetric fiber orientation distributions//Proceedings of the 21st International Conference on Medical Image Computing and Computer-Assisted Intervention. Spain: Springer: 45-52[ DOI: 10.1007/978-3-030-00931-1_6 http://dx.doi.org/10.1007/978-3-030-00931-1_6 ]
WuY, Feng Y J, Shen D G and Yap P T. 2018b. Penalized geodesic tractography for mitigating gyral bias//Proceedings of the 21st International Conference on Medical Image Computing and Computer-Assisted Intervention. Spain: Springer: 12-19[ DOI: 10.1007/978-3-030-00931-1_2 http://dx.doi.org/10.1007/978-3-030-00931-1_2 ]
Yang Z F, Lyu X Q, Zhang M and Ren G Y. 2016. Method of basing on neighboring voxel selection for white matter fiber crossing and bifurcating. Application Research of Computers, 33(8):2539-2542
杨志飞, 吕晓琪, 张明, 任国印. 2016.基于相邻体素选择的脑白质纤维交叉分叉问题解决方法.计算机应用研究, 33(8):2539-2542[DOI:10.3969/j.issn.1001-3695.2016.08.066]
Zhang F, Hancock E R, Goodlett C and Gerig G. 2009. Probabilistic white matter fiber tracking using particle filtering and von Mises-Fisher sampling. Medical Image Analysis, 13(1):5-18[DOI:10.1016/j.media.2008.05.001]
相关作者
相关机构
京公网安备11010802024621