空间约束层次加权Gamma混合模型的SAR图像分割
Hierarchically weighted Gamma mixture model with spatial constraint for SAR image segmentation
- 2020年25卷第2期 页码:400-408
收稿:2019-07-09,
修回:2019-9-26,
录用:2019-10-3,
纸质出版:2020-02-16
DOI: 10.11834/jig.190337
移动端阅览

浏览全部资源
扫码关注微信
收稿:2019-07-09,
修回:2019-9-26,
录用:2019-10-3,
纸质出版:2020-02-16
移动端阅览
目的
2
合成孔径雷达(SAR)图像中像素强度统计分布呈现出复杂的特性,而传统混合模型难以建模非对称、重尾或多峰等特性的分布。为了准确建模SAR图像统计分布并得到高精度分割结果,本文提出一种利用空间约束层次加权Gamma混合模型(HWGaMM)的SAR图像分割算法。
方法
2
采用Gamma分布的加权和定义混合组份;考虑到同质区域内像素强度的差异性和异质区域间像素强度的相似性,采用混合组份加权和定义HWGaMM结构。采用马尔可夫随机场(MRF)建模像素空间位置关系,利用中心像素及其邻域像素的后验概率定义混合权重以将像素邻域关系引入HWGaMM,构建空间约束HWGaMM,以降低SAR图像内固有斑点噪声的影响。提出算法结合M-H(Metropolis-Hastings)和期望最大化算法(EM)求解模型参数,以实现快速SAR图像分割。该求解方法避免了M-H算法效率低的缺陷,同时克服了EM算法难以求解Gamma分布中形状参数的问题。
结果
2
采用3种传统混合模型分割算法作为对比算法进行分割实验。拟合直方图结果表明本文算法具有准确建模复杂统计分布的能力。在分割精度上,本文算法比基于高斯混合模型(GMM)、Gamma分布和Gamma混合模型(GaMM)分割算法分别提高33%,29%和9%。在分割时间上,本文算法虽然比GMM算法多64 s,但与基于Gamma分布和GaMM算法相比较分别快600 s和420 s。因此,本文算法比传统M-H算法的分割效率有很大的提高。
结论
2
提出一种空间约束HWGaMM的SAR图像分割算法,实验结果表明提出的HWGaMM算法具有准确建模复杂统计分布的能力,且具有较高的精度和效率。
Objective
2
The development of synthetic aperture radar (SAR) technology has resulted in the generation of high-resolution SAR images under all weather conditions and time periods. SAR images are widely used in many fields
such as disaster monitoring and ocean science. SAR image segmentation is a crucial step in image processing. The statistical model-based SAR segmentation algorithm is popular for its statistical distribution of homogeneous regions in SAR images with specific regularity. However
the statistical distribution of pixel intensities in high-resolution SAR images can be asymmetric
heavy-tailed
or multi-modal. Traditional mixture models use the weighted sum of components to model the statistical distribution of pixel intensities in SAR image segmentation. The components of mixture models are defined by probability density functions to mainly model the statistical distribution of homogeneous regions. The components can be Gaussian
student's
or Gamma distribution in the Gaussian mixture model (GMM)
student's mixture model
and gamma mixture model (GaMM)
respectively. However
these components fail to model the complicated distribution of pixel intensities in SAR images. To address the problem
this study proposes a SAR image segmentation algorithm that is based on a hierarchically weighted Gamma mixture model (HWGaMM) with spatial constraint.
Method
2
A mixture model is defined by the weighted sum of its components to model the statistical distribution of pixel intensities. Its components are usually defined by the probability distribution
which results in the difficulty of modeling the complicated distribution of homogeneous regions in SAR images. To accurately model the asymmetric
heavy-tailed
or multi-modal distribution of pixel intensities
the proposed algorithm uses the HWGaMM to model the statistical distribution of pixel intensities in SAR images. The component of the HWGaMM is defined by the weighted sum of Gamma distributions
which represent the element used to model the statistical distribution of local homogeneous regions. As a result of the differences in pixel intensities in the same region and the similarities of pixel intensities in different regions for high-resolution SAR images
the HWGaMM is defined by the weighted sum of the components. The hierarchy of the HWGaMM can be expressed as follows. The basic layer is the element
i.e.
Gamma distribution
which is used to model the statistical distribution of local homogeneous regions. The second layer is the component
which is the weighted sum of elements to mainly model the statistical distribution of homogeneous regions. The top layer is the HWGaMM
which is the weighted sum of components to model the statistical distribution of SAR images. The spatial relation of pixels is modeled by a Markov random field to reduce the influence of image noise. The spatial relation of pixels is introduced to the HWGaMM by defining the weight of components by the posterior probabilities of the pixels and neighboring pixels. Such introduction can improve the robustness of the proposed algorithm and prevent the increase in the complexity of model parameter estimation. In this work
SAR image segmentation is realized by estimating the model parameters through the combination of the Metropolis-Hastings (M-H) algorithm and expectation maximization (EM) algorithm. The traditional M-H algorithm usually suffers from poor efficiency because of its sampling for every model parameter in each iteration. The EM algorithm cannot easily estimate the shape parameter of a Gamma distribution because the shape parameter is included in the gamma function. To address such problem
the proposed algorithm uses the M-H algorithm in simulating the posterior distribution of the shape parameter and the EM algorithm in estimating the scale parameter and element weight. The method of parameter estimation overcomes the drawback of the EM algorithm and achieves higher efficiency than the M-H algorithm.
Result
2
Segmentation experiments are carried out on simulated and real SAR images
and the results are analyzed qualitatively and quantitatively to verify the feasibility and effectiveness of the proposed algorithm. The proposed algorithm is compared with the GMM-based
Gamma distribution-based
and GaMM-based segmentation algorithms to highlight its advantages. The results of the fitting histograms reveal that the HWGaMM can accurately model the complicated distribution of pixel intensities. The segmentation accuracy can be calculated from the confusion matrix to quantitatively evaluate the proposed algorithm. The segmentation accuracies of the proposed algorithm are 33%
29%
and 9% higher than those of the GMM-based
Gamma distribution-based
and GaMM-based segmentation algorithms
respectively. The segmentation time of the proposed algorithm is 64 s faster than that of GMM-based segmentation algorithm but is 600 s and 420 s slower than that of the gamma distribution-and GaMM-based segmentation algorithms
respectively.
Conclusion
2
This work proposes an SAR image segmentation algorithm that is based on a spatially constrained HWGaMM. The proposed HWGaMM can model the complicated distribution of pixel intensities. The proposed segmentation algorithm also has higher accuracy than other relevant methods. Although the efficiency of the proposed algorithm is lower than that of the EM-based segmentation algorithm
it is much higher than that of the M-H-based segmentation algorithm.
Gao G. 2010. Statistical modeling of SAR images:a survey. Sensors, 10(1):775-795[DOI:10.3390/s100100775]
Ji J, Lyu X J, Han L Y and Zhang C H. 2016. Fast and adaptive region merging based on perceptual hashing via multi-thresholding for SAR image segmentation. RemoteSensing Letters, 7(12):1199-1208[DOI:10.1080/2150704X.2016.1222097]
Ji J and Wang K L. 2014. A robust nonlocal fuzzy clustering algorithm with between-cluster separation measure for SAR image segmentation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(12):4929-4936[DOI:10.1109/JSTARS.2014.2308531]
Shi X, Li Y and Zhao Q H. 2018. High resolution SAR image segmentation method based on hierarchical Gamma mixture model. Pattern Recognition and Artificial Intelligence, 31(7):591-601
石雪, 李玉, 赵泉华. 2018.基于层次Gamma混合模型的高分辨率SAR影像分割方法.模式识别与人工智能, 31(7):591-601[DOI:10.16451/j.cnki.issn1003-6059.201807002]
Song W Y, Li M, Zhang P, Wu Y, Jia L and An L. 2017. Unsupervised PolSAR image classification and segmentation using Dirichlet process mixture model and Markov random fields with similarity measure. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(8):3556-3568[DOI:10.1109/JSTARS.2017.2684301]
Tang D K, Wang F and Wang H Q. 2019. Single-polarization SAR data flood water detection method based on Markov segmentation. Journal of Electronics and Information Technology, 41(3):619-625
唐德可, 王峰, 王宏琦. 2019.基于马尔可夫分割的单极化SAR数据洪涝水体检测方法.电子与信息学报, 41(3):619-625[DOI:10.11999/JEIT180420]
Wang H M and Shi J Y. 2018. SAR image segmentation algorithm based on contourlet domain AFMRF model. IET Image Processing, 12(7):1124-1130[DOI:10.1049/iet-ipr.2017.0290]
Wang Y, Li Y and Zhao Q H. 2015. Segmentation of high-resolution SAR image with unknown number of classes based on regular tessellation and RJMCMC algorithm. International Journal of Remote Sensing, 36(5):1290-1306[DOI:10.1080/01431161.2015.1009655]
Wang Y, Li Y and Zhao Q H. 2016. SAR image segmentation combined regular tessellation and M-H algorithm. Geomatics and Information Science of Wuhan University, 41(11):1491-1497
王玉, 李玉, 赵泉华. 2016.结合规则划分和M-H算法的SAR图像分割.武汉大学学报(信息科学版), 41(11):1491-1497[DOI:10.13203/j.whugis20140536]
Xia M Q, Yang X Z, Dong Z Y, Zheng X and Li G Q. 2015. Segmentation of polarimetric SAR sea ice image with noise suppression. Journal of Remote Sensing, 19(5):856-863
夏梦琴, 杨学志, 董张玉, 郑鑫, 李国强. 2015.噪声抑制的多极化SAR海冰图像分割.遥感学报, 19(5):856-863[DOI:10.11834/jrs.20155028]
Xu L L,Wong A and Clausi D A. 2017. An enhanced probabilistic posterior sampling approach for synthesizing SAR imagery with sea ice and oil spills. IEEE Geoscience and Remote Sensing Letters, 14(2):188-192[DOI:10.1109/lgrs.2016.2633572]
Yu F J, Sun W Z, Li J J, Zhao Y, Zhang Y M and Chen G. 2017. An improved Otsu method for oil spill detection from SAR images. Oceanologia, 59(3):311-317[DOI:10.1016/j.oceano.2017.03.005]
Zhang H, Wu Q M J, Nguyen T M and Sun X M. 2014. Synthetic aperture radar image segmentation by modified student's t-mixture model. IEEE Transactions on Geoscience and Remote Sensing, 52(7):4391-4403[DOI:10.1109/TGRS.2013.2281854]
Zhang H T and Li Y N. 2015. Watershed algorithm with threshold mark for color image segmentation. Journal of Image and Graphics, 20(12):1602-1611
张海涛, 李雅男. 2015.阈值标记的分水岭彩色图像分割.中国图象图形学报, 20(12):1602-1611[DOI:10.11834/jig.20151205]
Zhang J J, Li Y and Zhao Q H. 2016. Combining the expection maximization and genetic algorithms for SAR image segmentation within a MAS framework. Journal of Image and Graphics, 21(1):86-94
张金静, 李玉, 赵泉华. 2016.多主体框架下结合最大期望值和遗传算法的SAR图像分割.中国图象图形学报, 21(1):86-94[DOI:10.11834/jig.20160111]
Zhang Y H, Li Y, Zhao X M and Zhao Q H. 2016. ECM-based segmentation for multi-look SAR image. Journal of Remote Sensing, 20(6):1391-1401
张英海, 李玉, 赵雪梅, 赵泉华. 2016. ECM算法的多视SAR影像分割.遥感学报, 20(6):1391-1401[DOI:10.11834/jrs.20165288]
Zhao Q H, Li X L and Li Y. 2017. Multilook SAR image segmentation with an unknown number of clusters using a Gamma mixture model and hierarchical clustering. Sensors, 17(5):1114[DOI:10.3390/s17051114]
Zhao Q H, Shi X, Wang Y and Li Y. 2017. Remote sensing image segmentation based on spatially constrained Gaussian mixture model with unknown class number. Journal on Communications, 38(2):34-43
赵泉华, 石雪, 王玉, 李玉. 2017.可变类空间约束高斯混合模型遥感图像分割.通信学报, 38(2):34-43[DOI:10.11959/j.issn.1000-436x.2017026]
Zhao X M, Li Y and Zhao Q H. 2014. Image segmentation by fuzzy clustering algorithm combining hidden Markov random field and Gaussian regression model. Journal of Electronics and Information Techno-logy, 36(11):2730-2736
赵雪梅, 李玉, 赵泉华. 2014.结合高斯回归模型和隐马尔可夫随机场的模糊聚类图像分割.电子与信息学报, 36(11):2730-2736[DOI:10.3724/SP.J.1146.2013.01751]
Zhen H, Guo W and Yan J W. 2019. Synthetic aperture radar image target segmentation method based on boundary and texture information. Journal of Image and Graphics, 24(6):882-889
谌华, 郭伟, 闫敬文. 2019.综合边界和纹理信息的合成孔径雷达图像目标分割.中国图象图形学报, 24(6):882-889[DOI:10.11834/jig.180484]
相关文章
相关作者
相关机构
京公网安备11010802024621