结合视觉密码和离散小波变换的栅格地理数据双重水印
Raster geographic data dual watermarking based on visual cryptography and discrete wavelet transform
- 2020年25卷第3期 页码:558-567
收稿:2019-06-17,
修回:2019-10-17,
录用:2019-10-24,
纸质出版:2020-03-16
DOI: 10.11834/jig.190295
移动端阅览

浏览全部资源
扫码关注微信
收稿:2019-06-17,
修回:2019-10-17,
录用:2019-10-24,
纸质出版:2020-03-16
移动端阅览
目的
2
在栅格地理数据的使用过程中,为防止数据被破坏或被篡改,需要加强对数据完整性的检验;为防止数据被恶意传播,需要加强对数据版权信息的保护。双重水印技术可以同时完成这两项任务。
方法
2
利用基于异或的(2,2)-视觉密码方案VCS(visual cryptography scheme)和离散小波变换DWT(discrete wavelet transform),对数字栅格地理数据嵌入双重水印,使用半脆弱性水印作为第1重水印进行完整性检验,水印信息依据DWT变换后高频系数中水平分量之间的大小关系嵌入;使用零水印作为第2重水印进行版权保护,提取DWT变换后经低频子带奇异值分解的特征值生成特征份,利用基于异或的(2,2)-VCS,根据特征份和水印信息生成版权份。
结果
2
为验证算法的有效性,对具体的栅格地理数据进行实验分析。结果表明,本文算法中第1重水印能够正确区分偶然攻击和恶意破坏,对含水印的栅格地理数据进行质量因子为90、80、70、60、50的JPEG压缩后,提取出完整性水印的归一化相关系数NC(normalized correlation)值分别是1、0.996、0.987、0.9513、0.949,在定位裁剪攻击时,能准确地定位到篡改的位置,对于定位替换攻击时,能定位到篡改的大致位置;第2重水印具有良好的视觉效果和较强的鲁棒性,对含水印的栅格地理数据进行滤波攻击、JPEG压缩、裁剪攻击、缩放攻击等性能测试,提取出版权水印的NC值优于其他方案。
结论
2
论文基于异或的(2,2)-VCS和DWT提出的栅格地理数据双重水印算法,在实现数据完整性检验的同时达到了版权保护的目的。
Objective
2
Raster geographical data are important and sensitive. Once the raster geographic data are destroyed or tampered with
security risks to users occur. In addition
if users maliciously disseminate data
many unauthorized users will use the data beyond their authority
which also poses a threat to the data security. Strengthening the integrity of data inspection is necessary to prevent data from being destroyed and tampered with. Strengthening the copyright protection of data is also necessary to prevent raster geographic data from being maliciously disseminated. With the various requirements of integrity checking and copyright protection for watermarking
achieving the requirements of integrity checking and copyright protection at the same time by embedding only one watermarking information in raster geographic data is difficult. If the two technologies are combined
then the protection of raster geographic data will be comprehensive
and the dual watermarking technology can simultaneously achieve integrity checking and copyright protection.
Method
2
XOR(2
2)-VCS and discrete wavelet transform (DWT) are used to embed double watermarking into digital raster geographic data. Semi-fragile watermarking is used as the first watermarking for integrity test. The watermarking information is embedded according to the size relationship between the horizontal component
$$HL$$
in the high-frequency coefficients after DWT transformation
which can correctly distinguish between accidental and malicious attacks
and accurately locate malicious attacks. Zero watermarking is used as the second watermarking for copyright protection in extracting the eigenvalues of
$$LL$$
sub-bands after DWT transform and singular value decomposition to generate feature copies. XOR-based (2
2)-VCS is used to generate copyright copies according to feature copies and watermarking information. Copyright watermarking is robust and has good visual effect. The algorithm of embedding the double watermark is as follows. First
the raster geographic data is separated into red
green
and blue gray images. Second
the blue gray image is transformed by DWT
and the watermark image
$$\boldsymbol{W}_1$$
is scrambled by Arnold. Third
the scrambled watermark image
$$\boldsymbol{W}'_1$$
is embedded into the
$$HL$$
sub-band. Fourth
the red gray image is scrambled by Arnold
and then the scrambled red gray image is transformed by DWT. Fifth
the eigenvalue is calculated by singular value decomposition (SVD) operation for the
$$LL$$
sub-band
and the copyright share W
$$_2^2$$
is generated according to
$$\boldsymbol{W}_{2}$$
and
$$\boldsymbol{W}_2^1$$
by XOR (2
2)-VCS
which is saved by the copyright party. Sixth
the blue and red gray images of the watermarked image are obtained by inverse discrete wavelet transform (IDWT) transformation of each sub-band
which are synthesized with the green gray images to obtain the watermarked raster geographic data. The algorithm of extracting double watermark is as follows. First
the watermarked raster geographic data is separated into red
green
and blue gray images. Second
the blue gray image is transformed by IDWT
and the scrambled watermark image is extracted from the
$$HL$$
sub-band. Third
the watermark image is extracted by Arnold. Fourth
the red gray image is scrambled by Arnold
and then the scrambled red gray image is transformed by DWT. Fifth
the eigenvalue is calculated by SVD operation for the
$$LL$$
sub-band
and the copyright watermark image is generated according to copyright share and eigenvalue share by XOR (2
2)-VCS.
Result
2
To verify the effectiveness of the algorithm
we analyzed the specific raster geographic data experimentally using the proposed algorithm. The experimental results show that the integrity watermark in this algorithm can correctly distinguish between accidental attack and malicious damage. After JPEG compression with quality factors 90
80
70
60
and 50
the normalized correlation (NC) values of the extracted integrity watermark are 1
0.996
0.987
0.9513
and 0.949
respectively. When locating the tailoring attack
the algorithm can accurately locate the tampered position. When locating the replacement attack
the algorithm can locate the tampered approximate position. Copyright watermarking has good visual effect and strong robustness. As the embedding and extracting of the copyright watermark have no change to the raster geographic data itself
the attacker cannot detect whether the raster geographic data contain a watermark image. Obtaining the feature copies is difficult
and even if the eigenvalue share is obtained
the copyright share cannot be obtained because no copyright watermark information exists. The NC value of the copyright watermark is better than that of other schemes by testing the performance of the watermarked raster geographic data such as filtering attack
JPEG compression
tailoring attack
and scaling attack.
Conclusion
2
According to the requirement of integrity checking and copyright protection of raster geographic data
on the basis of deeply analyzing the characteristics of raster geographic data
integrity checking and copyright protection technology
an algorithm of integrity checking and copyright protection of raster geographic data is proposed based on DWT and VCS. The algorithm uses DWT and XOR (2
2)-VCS to embed double watermarking into raster geographic data. Semi-fragile watermarking is used as the first watermarking for integrity checking and zero watermarking is used as the second watermarking for copyright protection. Experiments show that the integrity watermarking can accurately locate the malicious damage
and the copyright watermarking is robust and has good visual effect.
Ahmed F and Ganesh E N. 2016. Implementation of encryption and watermarking algorithm for remote sensing image. International Journal of Engineering and Computer Science, 5(8):17633-17637[DOI:10.18535/ijecs/v5i8.36]
Barni M, Bartolini F, Cappellini V, Olmo G and Magli E. 2002. Near-lossless digital watermarking for copyright protection of remote sensing images//Proceedings of IEEE International Geoscience and Remote Sensing Symposium. Toronto, Ontario, Canada: IEEE: 1447-1449[ DOI: 10.1109/IGARSS.2002.1026144 http://dx.doi.org/10.1109/IGARSS.2002.1026144 ]
Chen X. 2018. Research on Copyright Protection of Geospatial Data Based on Robust Watermarking. Langfang: North China Institute of Aerospace Engineering http://cdmd.cnki.com.cn/Article/CDMD-13400-1018810417.htm .
陈曦. 2018.基于鲁棒水印的地理空间数据版权保护研究.廊坊: 北华航天工业学院, 2018
Fu H J, Liu J Z, Yang C S and Zhang H B. 2017. Research on blind watermarking algorithm for remote sensing image based on accuracy characteristic. Geospatial Information, 15(7):45-48
符浩军, 刘静祯, 杨成松, 张海勃. 2017.基于精度特征的遥感影像数据盲水印算法.地理空间信息, 15(7):45-48[DOI:10.3969/j.issn.1672-4623.2017.07.014]
Fu H J, Zhu C Q, Miao J and Hu Q Y. 2011. Multipurpose watermarking algorithm for digital raster map based on wavelet transformation. Acta Geodaetica et Cartographica Sinica, 40(3):397-400
符浩军, 朱长青, 繆剑, 胡群英. 2011.基于小波变换的数字栅格地图复合式水印算法.测绘学报, 40(3):397-400
Fu H J, Zhu C Q, Yuan J F and Xu H. 2013. A new watermarking algorithm for geo-spatial data//Proceedings of the 2012 International Conference on Information Technology and Software Engineering. Berlin Heidelberg: Springer: 945-951[ DOI: 10.1007/978-3-642-34528-9_100 http://dx.doi.org/10.1007/978-3-642-34528-9_100 ]
Fu J J, Wang K and Xu J J. 2016. A copyright protection scheme for multiband digital remote sensing imagery. Acta Electronica Sinica, 44(3):732-739
付剑晶, 王珂, 徐建军. 2016.一种面向多波段数字遥感影像的版权保护方案.电子学报, 44(3):732-739[DOI:10.3969/j.issn.0372-2112.2016.03.035]
Jiang L and Xu Z Q. 2012. DCT semi-fragile watermarking algorithm for remote sensing image. Journal of Huazhong University of Science and Technology (Nature Science), 40(7):47-51
蒋力, 徐正全. 2012.一种DCT域遥感影像半脆弱水印算法.华中科技大学学报(自然科学版), 40(7):47-51
Li L L and Sun J G. 2011. A watermarking scheme for remote sensing image based on DFT and watermarking segmentation. Computer Systems and Applications, 20(9):204-206, 225
李丽丽, 孙劲光. 2011.基于DFT和水印分割的遥感影像数字水印方案.计算机系统应用, 20(9):204-206, 225[DOI:10.3969/j.issn.1003-3254.2011.09.047]
Li L L and Sun J G. 2012. A watermarking scheme for remote sensing images based on contourlet transformation. Computer Applications and Software, 29(2):60-63
李丽丽, 孙劲光. 2012.基于Contourlet变换的遥感影像数字水印方案.计算机应用与软件, 29(2):60-63[DOI:10.3969/j.issn.1000-386X.2012.02.018]
Singh A K, Dave M and Mohan A. 2014. Hybrid technique for robust and imperceptible image watermarking in DWT-DCT-SVD domain. National Academy Science Letters, 37(4):351-358[DOI:10.1007/s40009-014-0241-8]
Sui X L, Wang Z G and Geng Z X. 2007. A digital watermarking algorithm for copyright notification and protection of remote sensing image. Remote Sensing Information, (3):25-28
隋雪莲, 王振国, 耿则勋. 2007.一种用于版权通知和保护的遥感图像水印算法.遥感信息, (3):25-28[DOI:10.3969/j.issn.1000-3177.2007.03.005]
Tong D Y, Ren N, Shi W Z and Zhu C Q. 2018. A computational model of watermark algorithmic robustness capable of resisting image cropping for remote sensing images. Sensors, 18(7):2096[DOI:10.3390/s18072096]
Wang J Y. 2010. Development trends of cartography and geographic information engineering. Acta Geodaetica et Cartographica Sinica, 39(2):115-119, 128
王家耀. 2010.地图制图学与地理信息工程学科发展趋势.测绘学报, 39(2):115-119, 128
Xiao Z J, Jiang D, Zhang H, Tang X L and Chen H. 2019. Adaptive zero-watermarking algorithm based on boost normed singular value decomposition. Journal of Image and Graphics, 24(1):1-12
肖振久, 姜东, 张晗, 唐晓亮, 陈虹. 2019.增强奇异值分解的自适应零水印.中国图象图形学报,24(1):1-12[DOI:10.11834/jig.180443]
Xiao Z J, Zhang H, Chen H and Gao T. 2017. Zero-watermarking based on boost normed singular value decomposition and cellular neural network. Journal of Image and Graphics, 22(3):288-296
肖振久, 张晗, 陈虹, 高婷. 2017.增强奇异值分解和细胞神经网络的零水印.中国图象图形学报, 22(3):288-296[DOI:10.11834/jig.20170302]
Zhang Q and Cui L. 2015. Digital watermarking algorithm based on DWT. Journal of Beijing Normal University (Natural Science), 51(1):19-22
张勤, 崔丽. 2015.基于DWT的一种数字水印算法.北京师范大学学报(自然科学版), 51(1):19-22[DOI:10.16360/j.cnki.jbnuns.2015.01.005]
Zhu C Q, Fu H J, Miao J and Wang Y H. 2013. Adaptive visible watermarking algorithm for digital raster map. Acta Geodaetica et Cartographica Sinica, 42(2):304-309, 316
朱长青, 符浩军, 缪剑, 王玉海. 2013.一种自适应的数字栅格地图可见水印算法.测绘学报, 42(2):304-309, 316
Zhu P, Jia F and Zhang J L. 2013. A copyright protection watermarking algorithm for remote sensing image based on binary image watermark. Optik, 124(20):4177-4181[DOI:10.1016/j.ijleo.2012.12.049]
Ziegeler S B, Tamhankar H, Fowler J E and Bruce L M. 2014. Wavelet-based watermarking of remotely sensed imagery tailored to classification performance//Proceedings of IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data. Greenbelt, USA: IEEE: 259-262[ DOI: 10.1109/WARSD.2003.1295202 http://dx.doi.org/10.1109/WARSD.2003.1295202 ]
相关作者
相关机构
京公网安备11010802024621