应用深度光学应变特征图的人脸活体检测
Deep optical strain feature map for face anti-spoofing
- 2020年25卷第3期 页码:618-628
收稿:2019-06-14,
修回:2019-8-7,
录用:2019-8-14,
纸质出版:2020-03-16
DOI: 10.11834/jig.190286
移动端阅览

浏览全部资源
扫码关注微信
收稿:2019-06-14,
修回:2019-8-7,
录用:2019-8-14,
纸质出版:2020-03-16
移动端阅览
目的
2
随着人脸识别系统应用的日益广泛,提高身份认证的安全性,提升人脸活体检测的有效性已经成为迫切需要解决的问题。针对活体检测中真实用户的照片存在的人脸欺骗问题,提出一种新的解决照片攻击的人脸活体检测算法。
方法
2
利用局部二值模式LBP(local binary pattern)、TV-L1(total variation regularization and the robust L1 norm)光流法、光学应变和深度网络实现的人脸活体检测方法。对原始数据进行预处理得到LBP特征图;对LBP特征图提取光流信息,提高对噪声适应的鲁棒性;计算光流的导数得到图像的光学应变图,以表征相邻两帧之间的微纹理性质的微小移动量;通过卷积神经网络模型(CNN)将每个应变图编码成特征向量,最终将特征向量传递给长短期记忆LSTM(long short term memory)模型进行分类,实现真假人脸的判别。
结果
2
实验在两个公开的人脸活体检测数据库上进行,并将本文算法与具有代表性的活体检测算法进行对比。在南京航空航天大学(NUAA)人脸活体检测数据库中,算法精度达到99.79%;在Replay-attack数据库中,算法精度达到98.2%,对比实验的结果证明本文算法对照片攻击的识别更加准确。
结论
2
本文提出的针对照片攻击的人脸活体检测算法,融合光学应变图像和深度学习模型的优点,使得人脸活体检测更加准确。
Objective
2
Increasing application of face recognition systems improves the security of identity authentication systems and the effectiveness of face detection has become an urgent problem. In recent years
the development of face recognition has the advantages that users do not require to cooperate with the recognition equipment
and can recognize face images in a timely manner
with moderate cost
stable security
and intuitive results
thereby making face recognition a widely used technology. Thus
among all biometric features that can achieve spoofing attacks
face spoofing attacks is the first to bear the brunt. An illegal visitor can easily obtain photos of legitimate users in multiple ways
which poses a serious threat to the security system of legitimate users. Therefore
the detection of face anti-spoofing
reduction of threats to face anti-spoofing
and assurance of security of the recognition system are urgent problems to be solved. This paper proposes a novel face detection algorithm to perform photo anti-spoofing.
Method
2
According to the single difference clue between images to solve the face anti-spoofing
the algorithm has a problem of low universality. The face anti-spoofing method proposed in this paper combines three differential cues
namely
facial micro-texture change
optical strain feature map
and depth feature network. The entire experimental process combines the micro-texture information analysis method of the image
life information analysis method
and deep learning method
and divides the entire experimental flowchart into local binary patterns (LBP) image local texture feature operator to extract an LBP feature map. The total variation regularization and the robust L1 norm TV-L1 optical flow method extracts image optical flow information
and the optical strain feature describes small changes in the adjacent image frame motion and deep network extraction features
which are eventually classified into four parts. The specific steps of algorithm implementation are described in the following. First
the selected NUAA dataset and Replay-attack dataset are processed into a group of data every 10 frames. After face feature points are located in Dlib
Face++ API is used to extract facial landmarks for face alignment and crop as grayscale images to mask the effect of light on the image recognition. The LBP feature extraction operation is conducted on the cropped grayscale image to obtain the LBP feature map
which can effectively describe the image spatial information. Second
optical flow information is extracted from the LBP feature map to improve the robustness of noise adaptation
and then the derivative of the optical flow is calculated to obtain the optical strain map of the image
thereby characterizing the small amount of movement of the micro-texture properties between successive frames. Finally
convolutional neural network model (CNN) is used to encode each strain map into feature vector to extract the spatial information of the strain image
and then through the feature vector to the long short term memory (LSTM) model to learn the sequential information of the continuous image and perform classified prediction to discriminate between photo attacks used by legitimate or illegal users.
Result
2
The experiments are performed on two public human face anti-spoofing databases and compared with the representative algorithm. This paper mainly focuses on the face anti-spoofing detection algorithm for photo spoofing attacks. Therefore
the sample part of the database related to photo attacks is selected as a negative sample of experimental data
and the real face is used as a positive sample. According to the analysis of the experimental results
the NUAA database results show that the accuracy of the proposed algorithm is 99.79% in this study. Compared with the second detection method based on CNN
the algorithm has an accuracy rate that is improved by approximately 1.5%. The experimental results of the Replay-attack database show that the accuracy of our method is 98.2%. The experimental comparison results of our algorithm outperform the state of the art in identifying photo attacks.
Conclusion
2
The optical strain maps are used to effectively represent the dynamic spatiotemporal information between frames and these maps are used as the input data to represent the spatial features at time
$$t$$
by encoding them as a fixed length vector using CNN. Thus
the vector is transmitted into LSTM to learn the temporal dynamic information features of the face detection algorithm for photo attack. The face anti-spoofing detection is more accurate when the advantages of the optical strain image and deep learning model are integrated.
Akhtar Z and Foresti G L. 2016. Face spoof attack recognition using discriminative image patches. Journal of Electrical and Computer Engineering, 2016:4721849[DOI:10.1155/2016/4721849]
Bao W, Li H, Li N and Jiang W. 2009. A liveness detection method for face recognition based on optical flow field//Proceedings of 2009 International Conference on Image Analysis and Signal Processing. Taizhou, China: IEEE: 233-236[ DOI: 10.1109/IASP.2009.5054589 http://dx.doi.org/10.1109/IASP.2009.5054589 ]
Boulkenafet Z, Komulainen J and Hadid A. 2017. Face antispoofing using speeded-up robust features and fisher vector encoding. IEEE Signal Processing Letters, 24(2):141-145[DOI:10.1109/LSP.2016.2630740]
Gragnaniello D, Poggi G, Sansone C and Verdoliva L. 2015. An investigation of local descriptors for biometric spoofing detection. IEEE Transactions on Information Forensics and Security, 10(4):849-863[DOI:10.1109/TIFS.2015.2404294]
He K M, Zhang X Y, Ren S Q and Sun J. 2016. Deep residual learning for image recognition//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.LasVegas: IEEE: 770-778[ DOI: 10.1109/CVPR.2016.90 http://dx.doi.org/10.1109/CVPR.2016.90 ]
Khor H Q, See J, Phan R C W and Lin W Y. 2018. Enriched long-term recurrent convolutional network for facial micro-expression recognition//Proceedings of the 13th IEEE International Conference on Automatic Face and Gesture Recognition. Xi'an, China: IEEE: 667-674[ DOI: 10.1109/FG.2018.00105 http://dx.doi.org/10.1109/FG.2018.00105 ]
Krizhevsky A, Sutskever I and Hinton G E. 2012. ImageNet classification with deep convolutional neural networks//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe: Curran Associates Inc.: 1097-1105
Lei C, Zhang H Y and Zhan S. 2019. Local texture features on the mesh for 3D face recognition. Journal of Image and Graphics, 24(2):215-226
雷超, 张海燕, 詹曙. 2019.结合曲面局部纹理特征的3维人脸识别.中国图象图形学报, 24(2):215-226[DOI:10.11834/jig.180447]
Li L, Feng X Y, Jiang X Y, Xia Z Q and Hadid A. 2017. Face anti-spoofing via deep local binary patterns//Proceedings of 2017 IEEE International Conference on Image Processing. Beijing: IEEE: 101-105[ DOI: 10.1109/ICIP.2017.8296251 http://dx.doi.org/10.1109/ICIP.2017.8296251 ]
Liu S Q, Lan X Y and Yuen P C. 2018. Remote photoplethysmography correspondence feature for 3D mask face presentation attack detection//Proceedings of the 15th European Conference on Computer Vision. Munich: Springer: 577-594[ DOI: 10.1007/978-3-030-01270-0_34 http://dx.doi.org/10.1007/978-3-030-01270-0_34 ]
Long M and Tong Y Y. 2018. Research on face liveness detection algorithm using convolutional neural network. Journal of Frontiers of Computer Science and Technology, 12(10):1658-1670
龙敏, 佟越洋. 2018.应用卷积神经网络的人脸活体检测算法研究.计算机科学与探索, 12(10):1658-1670[DOI:10.3778/j.issn.1673-9418.1801009]
MäättäJ, Hadid A and Pietikäinen M. 2011. Face spoofing detection from single images using micro-texture analysis//Proceedings of 2011 International Joint Conference on Biometrics. Washington: IEEE: 1-7[ DOI: 10.1109/IJCB.2011.6117510 http://dx.doi.org/10.1109/IJCB.2011.6117510 ]
Määttä J, Hadid A and Pietikäinen M. 2012. Face spoofing detection from single images using texture and local shape analysis. IET Biometrics, 1(1):3-10[DOI:10.1049/iet-bmt.2011.0009]
Ojala T, Pietikainen M and MäenpääT. 2000. Gray scale and rotation invariant texture classification with local binary patterns//Proceedings of the 6th European Conference on Computer Vision. Dublin: Springer: 404-420[ DOI: 10.1007/3-540-45054-8_27 http://dx.doi.org/10.1007/3-540-45054-8_27 ]
Parveen S, Ahmad S M S, Abbas N H, Adnan W A W, Hanafi M and Naeem N. 2016. Face liveness detection using Dynamic Local Ternary Pattern (DLTP).Computers, 5(2):10[DOI:10.3390/computers5020010]
Shao R, Lan X Y and Yuen P C. 2017. Deep convolutional dynamic texture learning with adaptive channel-discriminability for 3D mask face anti-spoofing//Proceedings of 2017 IEEE International Joint Conference on Biometrics. Denver, CO, USA: IEEE: 748-755[ DOI: 10.1109/BTAS.2017.8272765 http://dx.doi.org/10.1109/BTAS.2017.8272765 ]
Shreve M, Godavarthy S, Goldgof D and Sarkar S. 2011. Macro- and micro-expression spotting in long videos using spatio-temporal strain//Proceedings of Face and Gesture 2011. SantaBarbara: IEEE: 51-56[ DOI: 10.1109/FG.2011.5771451 http://dx.doi.org/10.1109/FG.2011.5771451 ]
Simo J C and Hughes T J R. 2008. Computational Inelasticity. Beijing: World Pub. Corp
Szegedy C, Liu W, Jia Y Q, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V and Rabinovich A. 2015. Going deeper with convolutions//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Boston: IEEE: 1-9[ DOI: 10.1109/CVPR.2015.7298594 http://dx.doi.org/10.1109/CVPR.2015.7298594 ]
Tian Y and Xiang S J. 2018. LBP and multilayer DCT based anti-spoofing countermeasure in face liveness detection. Journal of Computer Research and Development, 55(3):643-650
田野, 项世军. 2018.基于LBP和多层DCT的人脸活体检测算法.计算机研究与发展, 55(3):643-650[DOI:10.7544/issn1000-1239.2018.20160417]
Wang C J, Li J B, Huang F Y, Sheng K K and Dong W M. 2015. A method and an apparatus for face detection algorithm assessment. CN104966046A
汪铖杰, 李季檩, 黄飞跃, 盛柯恺, 董未名. 2015.一种人脸关键点位定位结果的评估方法, 及评估装置.中国, CN104966046A
Wang X H and Dong Q K. 2011. An kind of iris recognition algorithm based on 2D-PLDA and wavelet subband. Journal of Image and Graphics, 16(1):59-65
王相海, 董钦科. 2011.一种基于2D-PLDA和小波子带的虹膜识别算法.中国图象图形学报, 16(1):59-65[DOI:10.11834/jig.20110102]
Wang X J and Chen Y B. 2013. A living body face detection method and system. CN, CN103440479A
王先基, 陈友斌. 2013.一种活体人脸检测方法与系统.中国, CN103440479A
Wen D, Han H and Jain A K. 2015. Face spoof detection with image distortion analysis. IEEE Transactions on Information Forensics and Security, 10(4):746-761[DOI:10.1109/TIFS.2015.2400395]
Yang J W, Lei Z, Liao S C and Li S Z. 2013. Face liveness detection with component dependent descriptor//Proceedings of 2013 International Conference on Biometrics. Madrid: IEEE: 1-6[ DOI: 10.1109/ICB.2013.6612955 http://dx.doi.org/10.1109/ICB.2013.6612955 ]
Zach C, Pock T and Bischof H. 2007. A duality based approach for realtime TV- L 1 optical flow//Proceedings of the 29th DAGM Symposium. Heidelberg: Springer: 214-223[ DOI: 10.1007/978-3-540-74936-3_22 http://dx.doi.org/10.1007/978-3-540-74936-3_22 ].
Zhang L, Li F and Wu K T. 2017. Directionless triangle-matching fingerprint recognition. Journal of Image and Graphics, 22(9):1214-1221
张莉, 李甫, 吴开腾. 2017.无方向的三角形匹配指纹识别.中国图象图形学报, 22(9):1214-1221[DOI:10.11834/jig.160489]
Zhou Y J, Liu Y Q, Yang F and Huang J. 2014. Palm-vein recognition based on oriented features. Journal of Image and Graphics, 19(2):243-252
周宇佳, 刘娅琴, 杨丰, 黄靖. 2014.基于方向特征的手掌静脉识别.中国图象图形学报, 19(2):243-252[DOI:10.11834/jig.20140210]
相关文章
相关作者
相关机构
京公网安备11010802024621