自适应权重注入机制遥感图像融合
New pan-sharpening method based on adaptive weight mechanism
- 2020年25卷第3期 页码:546-557
收稿:2019-06-12,
修回:2019-8-6,
录用:2019-8-13,
纸质出版:2020-03-16
DOI: 10.11834/jig.190280
移动端阅览

浏览全部资源
扫码关注微信
收稿:2019-06-12,
修回:2019-8-6,
录用:2019-8-13,
纸质出版:2020-03-16
移动端阅览
目的
2
遥感图像融合是将一幅高空间分辨率的全色图像和对应场景的低空间分辨率的多光谱图像,融合成一幅在光谱和空间两方面都具有高分辨率的多光谱图像。为了使融合结果在保持较高空间分辨率的同时减轻光谱失真现象,提出了自适应的权重注入机制,并针对上采样图像降质使先验信息变得不精确的问题,提出了通道梯度约束和光谱关系校正约束。
方法
2
使用变分法处理遥感图像融合问题。考虑传感器的物理特性,使用自适应的权重注入机制向多光谱图像各波段注入不同的空间信息,以处理多光谱图像波段间的差异,避免向多光谱图像中注入过多的空间信息导致光谱失真。考虑到上采样的图像是降质的,采用局部光谱一致性约束和通道梯度约束作为先验信息的约束,基于图像退化模型,使用光谱关系校正约束更精确地保持融合结果的波段间关系。
结果
2
在Geoeye和Pleiades卫星数据上同6种表现优异的算法进行对比实验,本文提出的模型在2个卫星数据上除了相关系数CC(correlation coefficient)和光谱角映射SAM(spectral angle mapper)评价指标表现不够稳定,偶尔为次优值外,在相对全局误差ERGAS(erreur relative globale adimensionnelle de synthèse)、峰值信噪比PSNR(peak signal-to-noise ratio)、相对平均光谱误差RASE(relative average spectral error)、均方根误差RMSE(root mean squared error)、光谱信息散度SID(spectral information divergence)等评价指标上均为最优值。
结论
2
本文模型与对比算法相比,在空间分辨率提升和光谱保持方面都取得了良好效果。
Objective
2
In remote sensing image processing
pan-sharpening is used to obtain a multispectral image spatially and spectrally with a high resolution by merging an original multispectral image with low spatial resolution and a panchromatic image with a high spatial resolution of the corresponding scene. Pan-sharpening has been widely used as a pre-processing tool in various vision applications
including change detection
object recognition
military intelligence
medical assistance
and disaster monitoring. Traditional pan-sharpening methods are mainly divided into two:component substitution (CS) and multire solution analysis (MRA). The fusion result of the CS method has high spatial resolution but easily generates spectral distortion. The MRA method can efficiently maintain spectral information but generates spatial degradation. To improve the spatial resolution of the fusion result while reducing spectral distortion
we use a variational approach based on several assumptions. In general
the difference among bands in multispectral images is rarely considered in the variational method
resulting in the same spatial information injected into each band to cause spectral distortion. Thus
different spatial information must be injected for each band to reduce spectral distortion. Most previous studies have used upsampled images as prior knowledge
but distortion will occur when the image is upsampled. To use the original multispectral image further accurately
we use prior knowledge. The degradation process is added to the method to maintain the spectral relationship among bands further because of the degradation of the upsampled image.
Method
2
A new pan-sharpening algorithm based on variational method is built. Given the differences between the MS bands
injecting the same spatial information for each band is unsuitable. To avoid spectral distortion and over sharpening caused by injecting excessive spatial information into multispectral images
we use spatial information constraints based on adaptive weights to inject different spatial information into each band. For the degradation problem of upsampled multispectral images
we use the information of the original and upsampled multispectral images in the model in different ways. First
the original multispectral image is used as a priori knowledge to maintain the spectral information by using channel gradient and local spectral consistency constraints. Second
the introduction of inaccurate inter-band relationship is avoided to reduce the accuracy of the fusion result. By considering the degradation process into the model
the spectral relationship correction constraint is used to restrain the fused result after the degradation for maintaining the relative relationship among the bands of the original multispectral image. The gradient descent algorithm is used to solve the objective function
and a numerical solution framework is designed to obtain the fused result. All experiments are implemented in MATLAB 2017 and executed on a computer with an Intel (R) 3.6 GHz central processing unit and 32 GB memory.
Result
2
We compare the proposed model with six state-of-the-art pan-sharpening algorithms
including wavelet
Gaussian low-pass full-scale regression-based approaches
joint intensity-hue-saturation and variational method
variational model for P + XS image fusion
guided filter
and nonlinear intensity-hue-saturation method. The quantitative evaluation metrics contain correlation coefficient (CC)
erreur relative globale adimensionnelle de synthèse (ERGAS)
root mean squared error (RMSE)
peak signal-to-noise ratio (PSNR)
spectral angle mapper (SAM)
relative average spectral error (RASE)
and spectral information divergence (SID). To show the validity of the model
we perform four sets of experiments for comparison. Experimental results show that our model outperforms all other methods in the Geoeye and Pleiades datasets
except in SAM and CC. Comparative experiments demonstrate that the fusion algorithm improves spatial resolution while reducing spectral distortion. In comparison with the suboptimal of all comparison algorithms in Pleiades dataset
average CC and PSNR (the higher the value
the better) increased by 0.74% and 1.85%
respectively; average ERGAS
RASE
RMSE
and SID (the lesser the value
the better) decreased by 8.27%
6.71%
6.57%
and 8.07%
respectively. In comparison with the suboptimal of all comparison algorithms in Geoeye dataset
the PSNR increased by an average of 1.16%
and average ERGAS
RASE
RMSE
SAM
and SID decreased by 8.84%
3.90%
4.17%
5.83%
and 15.81%
respectively.
Conclusion
2
In this paper
we propose a new pan-sharpening model based on adaptive weight mechanism. Geoeye and Pleiades data are used as test data
and the model is compared with six excellent algorithms. Experiment results show that our model outperforms the six state-of-the-art pan-sharpening approaches and improves high spatial resolution while mitigating spectral distortion.
Alparone L, Wald L, Chanussot J, Thomas C, Gamba P and Bruce L M. 2007. Comparison of pansharpening algorithms:outcome of the 2006 GRS-S data-fusion contest. IEEE Transactions on Geoscience and Remote Sensing, 45(10):3012-3021[DOI:10.1109/tgrs.2007.904923]
Amro I, Mateos J, Vega M, Molina R and Katsaggelos A K. 2011. A survey of classical methods and new trends in pansharpening of multispectral images. Eurasip Journal on Advances in Signal Processing, 2011(1):79-100[DOI:10.1186/1687-6180-2011-79]
Ballester C, Caselles V, Igual L, Verdera J and Rougé B.2006. A variational model for P+XS image fusion. International Journal of Computer Vision, 69(1):43-58[DOI:10.1007/s11263-006-6852-x]
Burt P and Adelson E. 1983. The Laplacian pyramid as a compact image code. IEEE Transactions on Communications, 31(4):532-540[DOI:10.1109/TCOM.1983.1095851]
Chang C I. 1999. Spectral information divergence for hyperspectral image analysis//1999 IEEE International Geoscience and Remote Sensing Symposium. Hamburg, Germany: IEEE: 509-511[ DOI:10.1109/IGARSS.1999.773549 http://dx.doi.org/10.1109/IGARSS.1999.773549 ]
Chen C, Li Y Q, Liu W and Huang J Z. 2014. Image fusion with local spectral consistency and dynamic gradient sparsity//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE: 2760-2765[ DOI:10.1109/CVPR.2014.347 http://dx.doi.org/10.1109/CVPR.2014.347 ]
Cheng J, Liu H J, Liu T, Wang F and Li H S. 2015. Remote sensing image fusion via wavelet transform and sparse representation. ISPRS Journal of Photogrammetry and Remote Sensing, 104:158-173[DOI:10.1016/j.isprsjprs.2015.02.015]
Choi J, Yu K and Kim Y. 2011. A new adaptive component-substitution-based satellite image fusion by using partial replacement. IEEE Transactions on Geoscience and Remote Sensing, 49(1):295-309[DOI:10.1109/TGRS.2010.2051674]
Choi M. 2006. A new intensity-hue-saturation fusion approach to image fusion with a tradeoff parameter. IEEE Transactions on Geoscience and Remote Sensing, 44(6):1672-1682[DOI:10.1109/tgrs.2006.869923]
Fang F M, Li F, Shen C M and Zhang G X. 2013. A variational approach for pan-sharpening. IEEE Transactions on Image Processing, 22(7):2822-2834[DOI:10.1109/TIP.2013.2258355]
Ghahremani M and Ghassemian H. 2016. Nonlinear IHS:a promising method for pan-sharpening. IEEE Geoscience and Remote Sensing Letters, 13(11):1606-1610[DOI:10.1109/LGRS.2016.2597271]
Ghassemian H. 2016. A review of remote sensing image fusion methods. Information Fusion, 32:75-89[DOI:10.1016/j.inffus.2016.03.003]
He K M, Sun J and Tang X O. 2013. Guided image filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(6):1397-1409[DOI:10.1109/TPAMI.2012.213]
Huang P S and Tu T M. 2003. A target fusion-based approach for classifying high spatial resolution imagery//Proceedings of 2003 IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003. Greenbelt, USA: IEEE: 175-181[ DOI:10.1109/WARSD.2003.1295190 http://dx.doi.org/10.1109/WARSD.2003.1295190 ]
Jiang N D, Wang Y N and Mao J X. 2008. Using the second generation Curvelet to improve HIS transform merge remote sensing images. Journal of Image and Graphics, 13(12):2376-2382
蒋年德, 王耀南, 毛建旭. 2008.基于2代Curvelet改进IHS变换的遥感图像融合.中国图象图形学报, 13(12):2376-2382[DOI:10.11834/jig.20081220]
Liu T and Cheng J. 2013. Remote sensing image fusion with wavelet transform and sparse representation. Journal of Image and Graphics, 28(6):1045-1053
刘婷, 程建. 2013.小波变换和稀疏表示相结合的遥感图像融合.中国图象图形学报, 18(8):1045-1053[DOI:10.11834/jig.20130820]
Liu Y, Chen X, Wang Z F, Wang Z J, Ward K R and Wang X S. 2018. Deep learning for pixel-level image fusion:recent advances and future prospects. Information Fusion, 42:158-173[DOI:10.1016/j.inffus.2017.10.007]
Meng X C, Shen H F, Li H F, Zhang L P and Fu R D. 2019. Review of the Pansharpening methods for remote sensing images based on the idea of meta-analysis:practical discussion and challenges. Information Fusion, 46:102-113[DOI:10.1016/j.inffus.2018.05.006]
Otazu X, Gonzalez-Audicana M, Fors O and Nunez J. 2005. Introduction of sensor spectral response into image fusion methods. Application to wavelet-based methods. IEEE Transactions on Geoscience and Remote Sensing, 43(10):2376-2385[DOI:10.1109/tgrs.2005.856106]
Piella G. 2009. Image fusion for enhanced visualization:a variational approach. International Journal of Computer Vision, 83(1):1-11[DOI:10.1007/s11263-009-0206-4]
Rahmani S, Strait M, Merkurjev D, Moeller M and Wittman T. 2010. An adaptive IHS Pan-sharpening method. IEEE Geoscience and Remote Sensing Letters, 7(4):746-750[DOI:10.1109/lgrs.2010.2046715]
Shah V P, Younan N H and King R L. 2008. An efficient pan-sharpening method via a combined adaptive PCA approach and contourlets. IEEE Transactions on Geoscience and Remote Sensing, 46(5):1323-1335[DOI:10.1109/tgrs.2008.916211]
Shahdoosti H R and Ghassemian H. 2016. Combining the spectral PCA and spatial PCA fusion methods by an optimal filter. Information Fusion, 27:150-160[DOI:10.1016/j.inffus.2015.06.006]
Thomas C, Ranchin T, Wald L and Chanussot J. 2008. Synthesis of multispectral images to high spatial resolution:a critical review of fusion methods based on remote sensing physics. IEEE Transactions on Geoscience and Remote Sensing, 46(5):1301-1312[DOI:10.1109/tgrs.2007.912448]
Vivone G, Restaino R and Chanussot J. 2018. Full scale regression-based injection coefficients for panchromatic sharpening. IEEE Transactions on Image Processing, 27(7):3418-3431[DOI:10.1109/TIP.2018.2819501]
Yang C, Zhan Q M, Liu H M and Ma R Q. 2018. An IHS-based pan-sharpening method for spectral fidelity improvement using ripplet transform and compressed sensing. Sensors, 18(11):3624-3644[DOI:10.3390/s18113624]
Zhang G X, Fang F M, Zhou A M and Li F. 2015. Pan-sharpening of multi-spectral images using a new variational model. International Journal of Remote Sensing, 36(5):1484-1508[DOI:10.1080/01431161.2015.1014973]
Zhou Z M, Meng Y, Yang P L, Hu B and Chen C Q. 2016. Extended GIHS fusion for pan-sharpening based on image model//Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium. Beijing, China: IEEE: 2598-2601[ DOI:10.1109/IGARSS.2016.7729671 http://dx.doi.org/10.1109/IGARSS.2016.7729671 ]
Zhou Z M, Yang P L, Li Y X, Yin W and Jiang L. 2013. Joint IHS and variational methods for pan-sharpening of very high resolution imagery//Proceedings of 2013 IEEE International Geoscience and Remote Sensing Symposium. Melbourne, Australia: IEEE: 2597-2600[ DOI:10.1109/IGARSS.2013.6723354 http://dx.doi.org/10.1109/IGARSS.2013.6723354 ]
Zhu X X and Bamler R. 2013. A sparse image fusion algorithm with application to pan-sharpening. IEEE Transactions on Geoscience and Remote Sensing, 51(5):2827-2836[DOI:10.1109/tgrs.2012.2213604]
相关作者
相关机构
京公网安备11010802024621