基于水动力学、分数阶微分及Steger算法的线状目标提取
Linear object extraction based on hydrodynamics, fractional differential and Steger algorithm
- 2020年25卷第7期 页码:1436-1446
收稿:2019-06-28,
修回:2019-10-29,
录用:2019-11-5,
纸质出版:2020-07-16
DOI: 10.11834/jig.190278
移动端阅览

浏览全部资源
扫码关注微信
收稿:2019-06-28,
修回:2019-10-29,
录用:2019-11-5,
纸质出版:2020-07-16
移动端阅览
目的
2
线状目标的检测具有非常广泛的应用领域,如车道线、道路及裂缝的检测等,而裂缝是其中最难检测的线状目标。为避免直接提取线状目标时图像分割难的问题,以裂缝和车道线为例,提出了一种新的跟踪线状目标中线的算法。
方法
2
对图像进行高斯平滑,用一种新的分数阶微分模板增强图像中的模糊及微细线状目标;基于Steger算法提出一种提取线状目标中心线特征点的算法,避免了提取整体目标的困难;根据水动力学思想将裂隙看成溪流,通过最大熵阈值处理后,先进行特征点的连接,再基于线段之间的距离及夹角进行线段之间的连接(溪流之间的融合)。
结果
2
对300幅裂缝图像及4种类别的其他线状目标图像进行试验,并与距离变换、最大熵阈值法+细线化Otsu阈值分割+细线化、谷底边界检测等类似算法进行比较分析,本文算法检测出的线状目标的连续性好、漏检(大间隙少)和误检(毛刺及多余线段少)率均较低。
结论
2
本文算法能够在复杂的线状目标图像中准确快速地提取目标的中心线,一定程度上改善了复杂线状目标图像分割难的问题。
Objective
2
In all the 2D image segmentation
the objects in an image can be generally classified into area objects and linear objects. The two kinds of object extraction or detection are different
comparing to area object extraction
since the linear object is more elongated
discontinuous based algorithms may be more suitable to use
but vague or tiny edges can be easy lost
which will make the under-segmentation problem. The linear target detection has a very wide range of applications
such as lane line detection in transportation
road extraction in aerial images and remote sensing images
rock fracture analysis in rock engineering
and cement cracks and asphalt cracks in building and road construction applications. In all the linear object extraction or identification applications
the crack detection in an image is one of the most difficult linear object detection. In order to avoid having the difficulty for extracting linear objects directly and accurately
and to solve the problem of crack image segmentation
a new image segmentation algorithm for tracking crack central line is proposed.
Method
2
The new algorithm includes three aspects
namely
1) After image smoothing using a Gaussian filter
an improved fractional differential function is applied to enhance small and vague cracks. This function has nonzero coefficient compared with traditional Tiansi template
indicating that every neighboring pixel of the testing pixel is used for the central feature point detection; 2) Based on that a crack can be regarded as a river/creep
the crack is of a
V
shape
and the central line in a crack or river is the deep water line
hence
we try to detect the central lines of cracks. The pixels in the central line are called the feature points in this paper. The feature point extraction of crack central lines is based on Steger algorithm and crack image characteristics
where a 1D curve is extended to a 2D ridge or valley line. Then these structures are modeled using a 1D curve
and the feature point is in the direction when it is a curve feature point: the first derivative is zero
the second derivative takes the extreme value
and the feature points are extracted; 3) Considering the distance between the feature points
short gaps between the neighboring segments or points are connected by a line
and long gaps are filled in a optimal routine based on the basis of the gap length and segment angles. We consider that the extraction of cracks in an image is equivalent that a blind man go to find out rivers/creeks on a silt
he will be first step by step to check if there is a deep water point in his current local area
then mark these points and judge which points belong to the same river/creek
finally makes point connection. We assume that a rough and slender crack in a pavement image is a creek or river filled by water
and the boundary of the crack is the side wall. When the feature points of the crack are obtained
the remaining tasks are to connect adjacent feature points and fill crack central line gaps using the idea of water flow-hydrodynamic theory.
Result
2
We selected 300 pavement crack and 300 other linear object images in the experiments. Compared with the other four similar traditional algorithms
such as distance transformation
maximum entropy
Otsu
Canny and valley edge detection image segmentation algorithms
the proposed algorithm produces less gaps on the central lines of linear objects or cracks and has less over-segmentation and under-segmentation problems.
Conclusion
2
The proposed algorithm can be used in complex linear object and rough pavement crack images because it can rapidly and accurately extract the central line and overcome the existing image segmentation problems for linear object images.
Alam A K M B, Fujii Y, Fukuda D, Kodama J I and Kaneko K. 2015. Fractured rock permeability as a function of temperature and confining pressure. Pure and Applied Geophysics, 172(10):2871-2889[DOI:10.1007/s00024-015-1073-2]
Brantley S L. 2010. Rock to regolith. Nature Geoscience, 3(5):305-306[DOI:10.1038/ngeo858]
Cacciari P P and Futai M M. 2018. Assessing the tensile strength of rocks and geological discontinuities via pull-off tests. International Journal of Rock Mechanics and Mining Sciences, 105:44-52[DOI:10.1016/j.ijrmms.2018.03.011]
Chen J Q, Zhu H H and Li X J. 2016. Automatic extraction of discontinuity orientation from rock mass surface 3D point cloud. Computers and Geosciences, 95:18-31[DOI:10.1016/j.cageo.2016.06.015]
Chen L P, Chen X Y, Wang S L, Yang W Z and Lu S K. 2015. Foreign fiber image segmentation based on maximum entropy and genetic algorithm. Journal of Computer and Communications, 3(11):61267[DOI:10.4236/jcc.2015.311001]
Di H B and Gao D L. 2014. Gray-level transformation and canny edge detection for 3D seismic discontinuity enhancement. Computers and Geosciences, 72:192-200[DOI:10.1016/j.cageo.2014.07.011]
Fakhimi A, Lin Q and Labuz J F. 2018. Insights on rock fracture from digital imaging and numerical modeling. International Journal of Rock Mechanics and Mining Sciences, 107:201-207[DOI:10.1016/j.ijrmms.2018.05.002]
Felzenszwalb P F and Huttenlocher D P. 2012. Distance transforms of sampled functions. Theory of Computing, 8(19):415-428[DOI:10.4086/toc.2012.V008a019]
Guo J T, Liu S J, Zhang P N, Wu L X, Zhou W H and Yu Y N. 2017. Towards semi-automatic rock mass discontinuity orientation and set analysis from 3D point clouds. Computers and Geosciences, 103:164-172[DOI:10.1016/j.cageo.2017.03.017]
Guo L Q, Liao J B, Zhong F P, Chen J J, Huang H, Yu X and Dong K Y. 2012. Automated detection of rock discontinuity trace based on digital image processing and SVM. Journal of Sichuan University (Engineering Science Edition), 44(6):203-210
郭立钱, 廖俊必, 钟方平, 陈剑杰, 黄昊, 余翔, 董开营. 2012.基于数字图像处理和SVM的岩体裂隙迹线自动检测.四川大学学报(工程科学版), 44(6):203-210[DOI:10.15961/j.jsuese.2012.06.004]
Hakami E and Wang W X. 2005. Characterisation and Quantification of Resin-Impregnated Fault Rock Pore Space Using Image Analysis. Svensk Kärnbränsle-hantering AB
Ji S H, Park Y J and Lee K K. 2011. Influence of fracture connectivity and characterization level on the uncertainty of the equivalent permeability in statistically conceptualized fracture networks. Transport in Porous Media, 87(2):385-395[DOI:10.1007/s11242-010-9690-9]
Kabir S, Rivard P, He D C and Thivierge P. 2009. Damage assessment for concrete structure using image processing techniques on acoustic borehole imagery. Construction and Building Materials, 23(10):3166-3174[DOI:10.1016/j.conbuildmat.2009.06.013]
Kemeny J and Post R. 2003. Estimating three-dimensional rock discontinuity orientation from digital images of fracture traces. Computers and Geosciences, 29(1):65-77[DOI:10.1016/S0098-3004(02)00106-1]
Li L, Wang H J and Wang Y M. 2011. Discussion on description methods of rock fracture structure. Metal Mine, (6):1-5
李莉, 王洪江, 王贻明. 2011.岩体裂隙结构表征方法的探讨.金属矿山, (6):1-5
Li X J, Chen J Q and Zhu H H. 2016. A new method for automated discontinuity trace mapping on rock mass 3D surface model. Computers and Geosciences, 89:118-131[DOI:10.1016/j.cageo.2015.12.010]
Mohan A and Poobal S. 2018. Crack detection using image processing:a critical review and analysis. Alexandria Engineering Journal, 57(2):787-798[DOI:10.1016/j.aej.2017.01.020]
Noorian-Bidgoli M and Jing L R. 2015. Stochastic analysis of strength and deformability of fractured rocks using multi-fracture system realizations. International Journal of Rock Mechanics and Mining Sciences, 78:108-117
Shatnawi N. 2018. Automatic pavement cracks detection using image processing techniquesand neural network. International Journal of Advanced Computer Science and Applications, 9(9):399-402[DOI:10.14569/IJACSA.2018.090950]
Singh A, Lu X, Armstrong R and Mostaghimi P. 2018. Automatic fracture identification using X-ray images. ASEG Extended Abstracts, 2018(1):1-2[DOI:10.1071/ASEG2018abT6_2C]
Steger C. 1998. An unbiased detector of curvilinear structures. IEEE Transactions onPattern Analysis and Machine Intelligence, 20(2):113-125[DOI:10.1109/34.659930]
Steger C. 2000. Subpixel-precise extraction of lines and edges. International Archives of Photogrammetry and Remote Sensing, 33(3):141-156
Voorn M, Exner U and Rath A. 2013. Multiscale hessian fracture filtering for the enhancement and segmentation of narrow fractures in 3D image data. Computers and Geosciences, 57:44-53[DOI:10.1016/j.cageo.2013.03.006]
Wang W X, Bergholm F and Yang B. 2003. Froth delineation based on image classification. Minerals Engineering, 16(11):1183-1192[DOI:10.1016/j.mineng.2003.07.014]
Wang W X. 2011. Colony image acquisition system and segmentation algorithms. Optical Engineering, 50(12):#123001[DOI:10.1117/1.3662398]
Wang W X and Bergholm F. 2008. Fragment size estimation without image segmentation. The Imaging Science Journal, 56(2):91-96[DOI:10.1179/174313108X268312]
Wang W X, Li W S and Yu X. 2012. Fractional differential algorithms for rock fracture images. The Imaging Science Journal, 60(2):103-111[DOI:10.1179/1743131X11Y.0000000012]
Wang W X, Zheng S F, Lian R B and Liang Y J. 2017. Rock fissure pattern characterization by combining 1-D fractal dimension and statistical analysis. IEEE/CAA Journal of Automatica Sinica:1-7[DOI:10.1109/JAS.2017.7510391]
Xu J M and Zhao X B. 2007. Determination of fluid inclusion lines using edge-detection technique. Chinese Journal of Rock Mechanics and Engineering, 26(6):1132-1137
徐金明, 赵晓波. 2007.边缘检测技术在确定流体包裹体迹线中的应用.岩石力学与工程学报, 26(6):1132-1137[DOI:10.3321/j.issn:1000-6915.2007.06.005]
Yang J P, Chen W Z, Yang D S and Yuan J Q. 2015. Numerical determination of strength and deformability of fractured rock mass by FEM modeling. Computers and Geotechnics, 64:20-31[DOI:10.1016/j.compgeo.2014.10.011]
Yih C S. 1969. Fluid Mechanics. New York:McGraw-Hill
Zakeri H, Nejad F M and Fahimifar A. 2017. Image based techniques for crack detection, classification and quantification in asphalt pavement:a review. Archives of Computational Methods in Engineering, 24(4):935-977[DOI:10.1007/s11831-016-9194-z]
Zheng J, Zhang Y S, Li X Z and Shi X X. 2015. Digital method for acquiring discontinuity 2D density based on 3D digital traces model. Applied Mechanics and Materials, 738-739:526-530[DOI:10.4028/www.scientific.net/AMM.738-739.526]
相关作者
相关机构
京公网安备11010802024621