人群应急疏散可视仿真研究进展和问题
Progress and problems in visual simulation of crowd emergency evacuation behaviors
- 2019年24卷第10期 页码:1619-1626
收稿:2019-05-13,
修回:2019-6-28,
录用:2019-7-4,
纸质出版:2019-10-16
DOI: 10.11834/jig.190130
移动端阅览

浏览全部资源
扫码关注微信
收稿:2019-05-13,
修回:2019-6-28,
录用:2019-7-4,
纸质出版:2019-10-16
移动端阅览
人群应急疏散可视仿真是用智能体来模拟具有自主感知、情绪和行为能力的人群个体,并采用3维可视的方式来直观呈现人群应急疏散情景,可以为制定人群应急预案提供形象直观的分析方法。本文从人群仿真数据的来源、人群导航模型的构建、人群行为模型、人群情绪感染、人群渲染5个方面概述目前研究的进展,然后从仿真模型的可验证性、人群疏散导航模型的构建、人与环境的物理模型、动物逃生实验与仿真、疏散中的社会行为表现以及人群情绪的可视计算6个角度讨论需要进一步研究的问题。针对需要深入研究的问题,指出借助于紧急事件的视频监控分析和虚拟人群情景的用户调查,有助于完善人群仿真模型。结合物理模型,可以更准确地描述人群应急疏散场景。开展动物逃生实验分析,有助于完善人群运动导航算法。建立人群社会行为模型,可以更详细描述疏散中人群行为的多样性。构建基于多通道感知的人群情绪感染计算方法,可以详尽描述情绪感染的过程。人群应急疏散行为的可视仿真研究在城市的安全管理方面具有重要的应用前景,但其研究仍存在很多亟待解决的问题,综合地运用多学科知识,完善实验手段是进一步推动研究的关键所在。
The visual simulation of crowd emergency evacuation is a method that uses agents to simulate individuals with autonomous perceptions
emotions
and behavioral abilities. With 3D visual means
it can visualize the emergency evacuation scenarios of the crowd. This study summarizes the research progress from the sources of crowd simulation data
the construction of the crowd navigation and behavior models
the crowd emotional contagion
and the crowd rendering. This study also discusses issues that must be studied from the perspective of the verifiability of the simulation model
the construction of the crowd evacuation navigation model and the physical model of humans and environments
the animal evacuation experiment and simulation
the social behavior of evacuation
and the visual calculation of crowd emotions. For the problems that must be studied in depth
results are as follows. The video surveillance analysis of emergency events and the user survey of virtual crowd scenarios can be used to improve the crowd simulation model. The analysis of animal evacuation experiments can improve the crowd navigation algorithm. The social behavior model can describe the diversity of the crowd evacuation behaviors in further details. The calculation method based on multichannel perceptions can describe the process of emotional contagion in further details. Visual simulation research on crowd emergency evacuation behaviors has important application prospects in the management of urban safety. However
numerous problems remain to be solved in this field. The comprehensive application of multidisciplinary knowledge and the improvement of experimental methods are the keys for future studies.
Thalmann D, Musse S R. Crowd simulation[M]. 2nd ed. London, UK:Springer-Verlag London, 2013.
Charalambous P, Karamouzas I, Guy S J, et al. A data-driven framework for visual crowd analysis[J]. Computer Graphics Forum, 2014, 33(7):41-50.[DOI:10.1111/cgf.12472]
Lerner A, Chrysanthou Y, Shamir A, et al. Context-dependent crowd evaluation[J]. Computer Graphics Forum, 2010, 29(7):2197-2206.[DOI:10.1111/j.1467-8659.2010.01808.x]
Bera A, Kim S, Manocha D. Interactive crowd-behavior learning for surveillance and training[J]. IEEE Computer Graphics and Applications, 2016, 36(6):37-45.[DOI:10.1109/mcg.2016.113]
Zhong J H, Cai W T, Luo L B, et al. Learning behavior patterns from video for agent-based crowd modeling and simulation[J]. Autonomous Agents and Multi-Agent Systems, 2016, 30(5):990-1019.[DOI:10.1007/s10458-016-9334-8]
Grant J M, Flynn P J. Crowd scene understanding from video:a survey[J]. ACM Transactions on Multimedia Computing, Communications and Applications, 2017, 13(2):19.[DOI:10.1145/3052930]
Bernardini G, Quagliarini E, D'Orazio M. Towards creating a combined database for earthquake pedestrians' evacuation models[J]. Safety Science, 2016, 82:77-94.[DOI:10.1016/j.ssci.2015.09.001]
Dickinson P, Gerling K, et al. Virtual reality crowd simulation:effects of agent density on user experience and behaviour[J]. Virtual Reality, 2019, 23(1):19-32.[DOI:10.1007/s10055-018-0365-0]
Helbing D, Farkas I, Vicsek T. Simulationg dynamical features of escape panic[J]. Natrue, 2000, 407(6803):487-490.[DOI:10.1038/35035023]
Van Den Berg J, Lin M, Manocha D. Reciprocal velocity obstacles for real-time multi-agent navigation[C] //Proceedings of 2008 IEEE International Conference on Robotics and Automation. Pasadena, CA, USA: IEEE, 2008: 1928-1935.[ DOI: 10.1109/robot.2008.4543489 http://dx.doi.org/10.1109/robot.2008.4543489 ]
Saboia P, Goldenstein S. Crowd simulation:applying mobile grids to the social force model[J]. The Visual Computer, 2012, 28(10):1039-1048.[DOI:10.1007/s00371-012-0731-y]
He G Q, Jiang D X, Jin Y, et al. Crowd behavior simulation based on shadow obstacle and ORCA models[J]. Scientia Sinica Informationis, 2018, 48(3):233-247.
何高奇, 江东旭, 金祎, 等.结合影子障碍物和ORCA模型的人群仿真方法[J].中国科学:信息科学, 2018, 48(3):233-247.[DOI:10.1360/n112017-00253]
Treuille A, Cooper S, Popovi Z. Continuum crowds[J]. ACM Transactions on Graphics, 2006, 25(3):1160-1168.[DOI:10.1145/1179352.1142008]
ChuM L, Law K H. Incorporating individual behavior, knowledge, and roles in simulating evacuation[J]. Fire Technology, 2019, 55(2):437-464.[DOI:10.1007/s10694-018-0747-6]
Ren Z G, Gai W J, Peng Q S. Ego-centered path planning in evacuation simulation[J]. Computer-Aided Design&Computer Graphics, 2015, 27(9):1775-1785.
任治国, 盖文静, 彭群生.疏散仿真中关注个体心理的路径规划.计算机辅助设计与图形学学报, 2015, 27(9):1775-1785.[DOI:10.3969/j.issn.1003-9775.2015.09.023]
Ozcan C Y, Akcapinar Sezer E, Haciomeroglu M. A time-based global path planning strategy for crowd navigation[J]. Computer Animation and Virtual Worlds, 2019, 30(2):e1864.[DOI:10.1002/cav.1864]
Du Q Q, Liu S H, Mao T L, et al. Visualized editing method on evacuation schemes facing emergency simulation[J]. Journal of Computer-Aided Design&Computer Graphics, 2017, 29(8):1488-1496.
杜晴晴, 刘绍华, 毛天露, 等.面向应急撤离的人员疏运方案可视化编辑方法[J].计算机辅助设计与图形学学报, 2017, 29(8):1488-1496.[DOI:10.3969/j.issn.1003-9775.2017.08.011]
Luo L B, Zhou S P, Cai W T, et al. Agent-based human behavior modeling for crowd simulation[J]. Computer Animation and Virtual Worlds, 2008, 19(3-4):271-281.[DOI:10.1002/cav.238]
Durupinar F, Pelechano N, Allbeck J, et al. How the ocean personality model affects the perception of crowds[J]. IEEE Computer Graphics and Applications, 2011, 31(3):22-31.[DOI:10.1109/mcg.2009.105]
Yu Q X, Terzopoulos D. A decision network framework for the behavioral animation of virtual humans[C]//ACM SIGGRAPH/Eurographics Symposium on Computer Animation. San Dieqo, California: ACM, 2007: 119-128.[ DOI: 10.1145/1272690.1272707 http://dx.doi.org/10.1145/1272690.1272707 ]
Zhou M, Dong H R, Wen D, et al. Modeling of crowd evacuation with assailants via a fuzzy logic approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(9):2395-2407.[DOI:10.1109/TITS.2016.2521783]
Liu Z, Jin W, Huang P, et al. An emotion contagion simulation model for crowd events[J]. Journal of Computer Research and Development, 2013, 50(12):2578-2589.
刘箴, 金炜, 黄鹏, 等.人群拥挤事件中的一种情绪感染仿真模型研究[J].计算机研究与发展, 2013, 50(12):2578-2589.[DOI:10.7544/issn1000-1239.2013.20130960]
Xiang N, Zhang M M, Zhu L Y. Paralleled dynamic crowd emotion contagion algorithm[J]. Journal of System Simulation, 2016, 28(9):1964-1969.
向南, 张明敏, 朱凌云.动态人群情绪感染并行仿真算法[J].系统仿真学报, 2016, 28(9):1964-1969.[DOI:10.16182/j.cnki.joss.2016.09.006]
Durupinar F, Gudukbay U, Aman A, et al. Psychological parameters for crowd simulation:from audiences to mobs[J]. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(9):2145-2159[DOI:10.1109/TVCG.2015.2501801]
Beacco A, Pelechano N, Andújar C. A survey of real-time crowd rendering[J]. Computer Graphics Forum, 2016, 35(8):32-50.[DOI:10.1111/cgf.12774]
Mcdonnell R, Larkin M, Hernández B, et al. Eye-catching crowds:saliency based selective variation[J]. ACM Transactions on Graphics, 2009, 28(3):55.[DOI:10.1145/1531326.1531361]
Guy S J, Van Den Berg J, Liu W X, et al. A statistical similarity measure for aggregate crowd dynamics[J]. ACM Transactions on Graphics, 2012, 31(6):190.[DOI:10.1145/2366145.2366209]
Hoyet L, Olivier A H, Kulpa R, et al. Perceptual effect of shoulder motions on crowd animations[J]. ACM Transactions on Graphics, 2016, 35(4):53.[DOI:10.1145/2897824.2925931]
Stüvel S A, Magnenat-Thalmann N, Thalmann D, et al. Torso crowds[J]. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(7):1823-1837.[DOI:10.1109/TVCG.2016.2545670]
Kim S, Guy S J, Hillesland K, et al. Velocity-based modeling of physical interactions in dense crowds[J]. The Visual Computer, 2015, 31(5):541-555.[DOI:10.1007/s00371-014-0946-1]
Xu M L, Wang H, Chu S L, et al. Traffic simulation and visual verification in smog[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(1):3.[DOI:10.1145/3200491]
Reynolds C W. Flocks, herds, and schools:a distributed behavioral model[J]. ACM SIGGRAPH Computer Graphics, 1987, 21(4):25-34.[DOI:10.1145/37402.37406]
Tu X Y, Terzopoulos D. Artificial fishes:physics, locomotion, perception, behavior[C]//Proceedings of the 21st Annual Conference of Computer Graphics and Interactive Techniques. Orlando, FL, USA: ACM, 1994: 43-50.[ DOI: 10.1145/192161.192170 http://dx.doi.org/10.1145/192161.192170 ]
Wang X J, Jin X G, Deng Z G, et al. Inherent noise-aware insect swarm simulation[J]. Computer Graphics Forum, 2014, 33(6):51-62.[DOI:10.1111/cgf.12277]
Xiang W, Ren J P, Wang K, et al. Biologically inspired ant colony simulation[J]. Computer Animation and Virtual Worlds, 2018:e1867.[DOI:10.1002/cav.1867]
Liu H, Liu B X, Zhang H, et al. Crowd evacuation simulation approach based on navigation knowledge and two-layer control mechanism[J]. Information Sciences, 2018, 436-437:247-267.[DOI:10.1016/j.ins.2018.01.023]
Jaklin N, Kremyzas A, Geraerts R. Adding sociality to virtual pedestrian groups[C]. 21st ACM Symposium on Virtual Reality Software and Technology. Beijing, China: ACM, 2015: 163-172.[ DOI: 10.1145/2821592.2821597 http://dx.doi.org/10.1145/2821592.2821597 ]
Liu Z, Liu T T, Ma M H, et al. A perception-based emotion contagion model in crowd emergent evacuation simulation[J]. Computer Animation and Virtual Worlds, 2018, 29(3-4):e1817.[DOI:10.1002/cav.1817]
相关文章
相关作者
相关机构
京公网安备11010802024621