绘画图像美学研究方法综述
Overview of research methods of painting aesthetics
- 2019年24卷第11期 页码:1860-1881
收稿:2019-03-29,
修回:2019-5-10,
录用:2019-5-17,
纸质出版:2019-11-16
DOI: 10.11834/jig.190118
移动端阅览

浏览全部资源
扫码关注微信
收稿:2019-03-29,
修回:2019-5-10,
录用:2019-5-17,
纸质出版:2019-11-16
移动端阅览
图像美学作为当前情感计算和计算机视觉领域的研究热点,为数字化绘画图像的美学研究提供了理论基础和有效方法,而且在人类绘画艺术作品的研究与保护方面具有重要的应用价值。为了更好地研究绘画图像的美学特性,本文主要针对现阶段国内外的绘画美学研究相关文献,进行详细的整理与分析。以大量文献研究为基础,分析中西方绘画的不同表现形式及形成原因;归纳总结了两种绘画图像美学研究方法:实验美学与计算美学,并概述两类方法的相关性。概括了当前绘画图像研究中的常用数据集;然后,以绘画图像样本数量、受试者人数、审美等级及眼动指标等为依据,详细归纳了绘画图像实验美学方法的研究现状及发展;基于图像数量、特征、分类数量、分类算法和准确率,主要从绘画图像分类的角度(包括情感、复杂度、画家和风格等)详细综述了绘画图像计算美学方法的研究现状及发展;其次,简要梳理了绘画图像美学研究中常用的评价方法,并分析了当前研究中的常用评价指标;最后,提出了当前绘画图像美学研究中存在的问题和挑战,并探讨了存在问题的应对之策。
Aesthetics has been the subject of long-standing debates by philosophers and psychologists. In psychology
aesthetic experience is due to the interaction among perception
cognition
and emotion. This triad has been experimentally studied in the field of experimental aesthetics to obtain understanding of how aesthetic experience is related to the fundamental principles of human visual perception and brain processes. Recently
researchers in computer vision have gained interest in the topic
giving rise to the field of computational aesthetics. With computing hardware and methodology developing at a high pace
the modeling of perceptually relevant aspect of aesthetic stimuli has a huge potential. In the field of aesthetics
the image aesthetics is a popular issue in recent years. Image processing with computer scientists have
for a long time
attempted to solve image quality assessment and image semantics inference. The former deals primarily with the quantification of low-level perceptual degradation of an image
and the latter attempts to infer the content of an image and associate high level semantics to it in part or in whole. More recently
researchers have drawn ideas from the aforementioned methods to address more challenging problems such as associating pictures with aesthetics and emotions that they arouse in humans
with low-level image composition. Painting image is a kind of artistic work with emotion and aesthetics. By understanding the theme
the painter expresses his inner feelings in painting and passes them on to others. However
the artist's emotional communication is also affected and restricted by the audience's aesthetic ability. People's aesthetic and appreciation ability have a direct impact on the evaluation of painting. With the development and wide application of digital technology and network
people can obtain a large number of digital painting images through the Internet. Therefore
the aesthetic characteristics of painting images have become a research hotspot. At present
advanced image processing technology provides a theoretical basis and an effective method for aesthetic study of digital painting images and plays important roles in painting study and art protection. To better research the aesthetic characteristics of painting images
this study provides a comprehensive survey and analysis focusing on domestic and international research about painting aesthetics at present. Based on extensive literature research
this study first shows the different representation modes of Chinese and western paintings and analyzes the reason for such differences. This study also summarizes two methods of painting aesthetics
namely
experimental and computational aesthetics
and analyzes the correlation between the two methods. Experimental aesthetics provide abundant knowledge for computational aesthetics and also gains some quantitative information from computational aesthetics. Experimental aesthetics mainly study the specific attributes of works of art and can help us understand how aesthetic perception is related to human vision and how humans perceive the world. In the study of experimental aesthetics of painting images
researchers need to design aesthetic experiments for quantitative evaluation. The experiment mainly includes three steps: 1) preparing the sample set of painting images; 2) observing and evaluating the painting images by subjects; and 3) analyzing and studying the experimental results. The results of experimental aesthetics are mainly statistical data
such as the score of subjects to the painting image
the number and time of gaze
etc. These experimental data can be analyzed by statistical analytical methods
including variance analysis
correlation analysis
and principal component analysis
etc. Comparing with the subjective analysis in experimental aesthetics
the computational aesthetics of painting images are essentially objective
can avoid the influence of subjective will
and analyze detail features in the painting images. The purpose of the computational aesthetics research is to endow computer with the ability to assess the aesthetics value of images as human beings do. They mainly focus on the evaluation of image complexity (complex/uncomplicated)
quality (high/low quality)
visual preference (beautiful/not beautiful)
and author or artistic style of the painting. Researchers can analyze a large number of painting images automatically by computational aesthetics. In the image classification model of computational aesthetics
data sets are generally divided into training and test data. Different capacities of data sets adopt different evaluation methods. Leave-One-Out is often used when the capacity is small
and K-fold cross-validation is used conversely. The evaluation indicators include precision
accuracy rate
recall rate
P-R (precision-recall) curve
F-measure
confusion matrix
and ROC (receiver operating characteristic) curve. This study sums up the painting database commonly used and briefly describes the sources
quantities
and characteristics of different databases. Based on the number of painting samples
the number of subjects
the quantification of aesthetic grade
and the eye movement indices
this study summarizes the status and development of experimental aesthetic research methods of Chinese and western painting. Based on classification category
features
number of painting samples
classification algorithm
and accuracy
this study presents several commonly machine learning algorithms of painting classification (including emotion
complexity
author and style etc.)
and summarizes the research status and development of computational aesthetic research methods of Chinese and western painting.in detail. This study briefly reviews the commonly used evaluation methods in analyzing painting image aesthetics and evaluation indices. Finally
this study highlights the existing problems and challenges in the study of painting classification and affective analysis and discusses prospective solutions. Painting image aesthetics is an innovative and challenging research topic
which can be widely applied in the fields of classification of painting images
aesthetic evaluation of painting images
reconstruction and restoration of painting images
and historical and cultural research. Painting is a result of human creativity and pioneering civilization
so many excellent research ideas and methods have emerged. Through the comprehensive and systematic analysis of existing research
this article provides theoretical basis and exploration thoughts for future research on painting.
Zhu Y. Chen Lins theory of topological perception[J]. Psychological Science, 2005, 28(5): 1031-1034, 1030.
朱滢.陈霖的拓扑性质知觉理论[J].心理科学, 2005, 28(5): 1031-1034, 1030.[DOI: 10.3969/j.issn.1671-6981.2005.05.002]
Fan Z B, Li Y N, Yu J H, et al. Visual complexity of Chinese ink paintings[C]//ACM Symposium on Applied Perception. Cottbus, Germany: ACM, 2017: 1-8.[ DOI: 10.1145/3119881.3119883 http://dx.doi.org/10.1145/3119881.3119883 ]
Hayn-Leichsenring G U, Lehmann T, Redies C. Subjective ratings of beauty and aesthetics: correlations with statistical image properties in western oil paintings[J]. i-Perception, 2017, 8(3): 204166951771547.[DOI: 10.1177/2041669517715474]
Amirshahi S A, Hayn-Leichsenring G U, Denzler J, et al. JenAesthetics subjective dataset: analyzing paintings by subjective scores[M]//Agapito L, Bronstein M, Rother C. Computer Vision-ECCV 2014 Workshops. Cham: Springer International Publishing, 2014: 3-19.[ DOI: 10.1007/978-3-319-16178-5_1 http://dx.doi.org/10.1007/978-3-319-16178-5_1 ]
Amirshahi S A, Hayn-Leichsenring G U, Denzler J, et al. JenAesthetics subjective dataset: analyzing paintings by subjective scores[M]//Agapito L, Bronstein M M, Rother C. Computer Vision-ECCV 2014. Cham: Springer.[ DOI: 10.1007/978-3-319-16178-5_1 http://dx.doi.org/10.1007/978-3-319-16178-5_1 ]
Amirshahi S A, Redies C, Denzler J. How self-similar are artworks at different levels of spatial resolution?[C]//Proceeding of Symposium on Computational Aesthetics. Anaheim, California, USA: ACM, 2013: 93-100.[ DOI: 10.1145/2487276.2487282 http://dx.doi.org/10.1145/2487276.2487282 ]
Jia C H, Guo XY, Bai R Y. Review of feature extraction methods and research on affective analysis for paintings[J]. Journal of Image and Graphics, 2018, 23(7): 937-952.
贾春花, 郭小英, 白茹意.绘画特征提取方法与情感分析研究综述[J].中国图象图形学报, 2018, 23(7): 937-952.[DOI: 10.11834/jig.170626]
Machajdik J, Hanbury A. Affective image classification using features inspired by psychology and art theory[C]//Proceedings of the 18th ACM International Conference on Multimedia. Firenze, Italy: ACM, 2010: 83-92.[ DOI: 10.1145/1873951.1873965 http://dx.doi.org/10.1145/1873951.1873965 ]
Li B, Guo C, Ren H. Emotion distribution prediction of abstract painting image based on weighted KNN algorithm[J]. Journal of Communication University of China Science and Technology, 2018, 25(1): 36-40.
李博, 郭琛, 任慧.基于加权K近邻算法的抽象画图像情感分布预测[J].中国传媒大学学报:自然科学版, 2018, 25(1): 36-40.[DOI: 10.16196/j.cnki.issn.1673-4793.2018.01.007]
Zhang H, Yang Z R, Gönen M, et al. Affective abstract image classification and retrieval using multiple kernel learning[C]//Proceedings of International Conference on Neural Information Processing. Berlin, Germeny: Springer, 2013: 166-175.[ DOI: 10.1007/978-3-642-42051-1_22 http://dx.doi.org/10.1007/978-3-642-42051-1_22 ]
Hibadullah C F, Liew A W C, Jo J. Colour-emotion association study on abstract art painting[C]//Proceedings of 2015 International Conference on Machine Learning and Cybernetics. Guangzhou, China: IEEE, 2015: 488-493.[ DOI: 10.1109/ICMLC.2015.7340605 http://dx.doi.org/10.1109/ICMLC.2015.7340605 ]
Pasupa K, Chatkamjuncharoen P, Wuttilertdeshar C, et al. Using image features and eye tracking device to predict human emotions towards abstract images[M]//Bräunl T, McCane B, Rivera M, et al. Image and Video Technology. Cham: Springer, 2016, 4: 419-430.[ DOI: 10.1007/978-3-319-29451-3_34 http://dx.doi.org/10.1007/978-3-319-29451-3_34 ]
Karnewar A, Kanawaday A, Sawant C, et al. Classification of abstract images using machine learning[C]//Proceedings of 2017 International Conference on Deep Learning Technologies. Chengdu, China: ACM, 2017: 36-40.[ DOI: 10.1145/3094243.3094259 http://dx.doi.org/10.1145/3094243.3094259 ]
Sartori A, Yanulevskaya V, Salah A A, et al. Affective analysis of professional and amateur abstract paintings using statistical analysis and art theory[J]. ACM Transactions on Interactive Intelligent Systems, 2015, 5(2): 8.[DOI: 10.1145/2768209]
Yanulevskaya V, Uijlings J, Bruni E, et al. In the eye of the beholder: employing statistical analysis and eye tracking for analyzing abstract paintings[C]//Proceedings of the 20th ACM International Conference on Multimedia. Nara, Japan: ACM, 2012: 349-358.[ DOI: 10.1145/2393347.2393399 http://dx.doi.org/10.1145/2393347.2393399 ]
Sartori A, Culibrk D, Yan Y, et al. Who's afraid of Itten: using the art theory of color combination to analyze emotions in abstract paintings[C]//Proceedings of the 23rd ACM International Conference on Multimedia. Brisbane, Australia: ACM, 2015: 311-320.[ DOI: 10.1145/2733373.2806250 http://dx.doi.org/10.1145/2733373.2806250 ]
Alameda-Pineda X, Ricci E, Yan Y, et al. Recognizing emotions from abstract paintings using non-linear matrix completion[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 5240-5248.[ DOI: 10.1109/CVPR.2016.566 http://dx.doi.org/10.1109/CVPR.2016.566 ]
Florea C, Toca C, Gieseke F. Artistic movement recognition by boosted fusion of color structure and topographic description[C]//Proceedings of the 17th IEEE Winter Conference on Applications of Computer Vision. Santa Rosa, CA, USA: IEEE, 2017: 569-577.[ DOI: 10.1109/WACV.2017.69 http://dx.doi.org/10.1109/WACV.2017.69 ]
Van Noord N, Postma E. Learning scale-variant and scale-invariant features for deep image classification[J]. Pattern Recognition, 2017, 61: 583-592.[DOI: 10.1016/j.patcog.2016.06.005]
Sheng J C. Computerized learning and classification of traditional Chinese IWPs (Ink and Wash Paintings)[D]. Tianjin: Tianjin University, 2013.
盛家川.中国传统水墨画的计算机分类与算法研究[D].天津: 天津大学, 2013.
Sheng J C, Jiang J M. Recognition of Chinese artists via windowed and entropy balanced fusion in classification of their authored ink and wash paintings (IWPs)[J]. Pattern Recognition, 2014, 47(2): 612-622.[DOI: 10.1016/j.patcog.2013.08.017]
Yang B, Xu D Q. Color boosted visual saliency detection and its application to image classification[J]. Multimedia Tools and Applications, 2014, 69(3): 877-896.[DOI: 10.1007/s11042-012-1148-3]
Yang B, Xu D Q, Tang D W, et al. Aesthetic visual style assessment on Dunhuang murals[J]. Journal of Shanghai Jiaotong University (Science), 2014, 19(1): 28-34.[DOI: 10.1007/s12204-014-1473-y]
Yang B. Research on painting image classification based on aesthetic style[D]. Hangzhou: Zhejiang University, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10335-1013178483.htm .
杨冰.基于艺术风格的绘画图像分类研究[D].杭州: 浙江大学, 2013.
Amirshahi S A, Koch M, Denzler J, et al. PHOG analysis of self-similarity in aesthetic images[C]//Proceedings of the SPIE 8291, Human Vision and Electronic Imaging XVⅡ. Burlin game, California, USA: SPIE, 2012: 46.[ DOI: 10.1117/12.911973] http://dx.doi.org/10.1117/12.911973] .
Condorovici R G, Florea C, Vranceanu R, et al. Perceptually-inspired artistic genre identification system in digitized painting collections[M]//Kämäräinen J K, Koskela M. Image Analysis. Berlin Heidelberg, Germany: Springer, 2013: 687-696.[ DOI: 10.1007/978-3-642-38886-6_64 http://dx.doi.org/10.1007/978-3-642-38886-6_64 ]
Demetriou M L, Hardeberg J Y, Adelmann G. Computer-aided reclamation of lost art[M]//Fusiello A, Murino V, Cucchiara R. Computer Vision – ECCV 2012. Workshops and Demonstrations. Berlin, Heidelberg, Germany: Springer, 2012.[ DOI: 10.1007/978-3-642-33863-2_57 http://dx.doi.org/10.1007/978-3-642-33863-2_57 ]
Li C C, Chen T. Aesthetic visual quality assessment of paintings[J]. IEEE Journal of Selected Topics in Signal Processing, 2009, 3(2): 236-252.[DOI: 10.1109/JSTSP.2009.2015077]
Mallon B, Redies C, Hayn-Leichsenring G U. Beauty in abstract paintings: perceptual contrast and statistical properties[J]. Frontiers in Human Neuroscience, 2014, 8161.[DOI: 10.3389/fnhum.2014.00161]
Oncu A I, Deger F, Hardeberg J Y. Evaluation of digital inpainting quality in the context of artwork restoration[C]// Proceedings of International Conference on Computer Vision. Florence, Italy: Springer-Verlag, 2012: 561-570.[ DOI: 10.1007/978-3-642-33863-2_58 http://dx.doi.org/10.1007/978-3-642-33863-2_58 ]
Florea C, Condorovici R, Vertan C, et al. Pandora: description of a painting database for art movement recognition with baselines and perspectives[C]//Proceedings of the 24th European Signal Processing Conference. Budapest, Hungary: IEEE, 2016: 918-922.[ DOI: 10.1109/EUSIPCO.2016.7760382 http://dx.doi.org/10.1109/EUSIPCO.2016.7760382 ]
Florea C, Toca C, Gieseke F. Artistic movement recognition by boosted fusion of color structure and topographic description[C]//Proceedings of the 17th IEEE Winter Conference on Applications of Computer Vision. Santa Rosa, CA, USA: IEEE, 2017: 569-577.[ DOI: 10.1109/WACV.2017.69 http://dx.doi.org/10.1109/WACV.2017.69 ]
Bar Y, Levy N, Wolf L. Classification of artistic styles using binarized features derived from a deep neural network[M]//Agapito L, Bronstein M, Rother C. Computer Vision-ECCV 2014 Workshops. Cham: Springer, 2015: 71-84.[ DOI: 10.1007/978-3-319-16178-5_5 http://dx.doi.org/10.1007/978-3-319-16178-5_5 ]
Saleh B, Elgammal A. Large-scale classification of fine-art paintings: learning the right metric on the right feature[J]. Journal of Computer Science&Technology, 2015, 25(3): 595-605.
Amirshahi S A, Haynleichsenring G U, Denzler J and Redies C. Color: A crucial factor for aesthetic quality assessment in a subjective dataset of paintings[C]//Proceedings of the 12th Congress of the International Colour Association (AIC), July 2013. https://www.researchgate.net/publication https://www.researchgate.net/publication .
Sun M J, Zhang D, Wang Z, et al. Monte Carlo convex hull model for classification of traditional Chinese paintings[J]. Neurocomputing, 2016, 171: 788-797.[DOI: 10.1016/j.neucom.2015.08.013]
Zou Q, Cao Y, Li Q Q, et al. Chronological classification of ancient paintings using appearance and shape features[J]. Pattern Recognition Letters, 2014, 49: 146-154.[DOI: 10.1016/j.patrec.2014.07.002]
Redies C, Amirshahi S A, Koch M, et al. PHOG-derived aesthetic measures applied to color photographs of artworks, natural scenes and objects[C]//Proceedings of European Conference on Computer Vision. Berlin, Heidelberg, Germany: Springer, 2012.[ DOI: 10.1007/978-3-642-33863-2_54 http://dx.doi.org/10.1007/978-3-642-33863-2_54 ]
Fechner G T. Zur experimentalen Ästhetik (On experimental aesthetics)[M]. Abhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Reprint. Hildesheim: Olms, 1871, 9: 555-635.
Fechner G. Vorschule der äesthetik[M]. Spektrum: Springer, 1876: 1-2.
Zhang J J, Peng R, Wang J, Yu J H. Computational aesthetic evaluation of Chinese wash paintings[J]. Journal of Software, 2016, 27(S2): 220-233.
张佳婧, 彭韧, 王健, 于金辉.水墨画计算审美评估[J].软件学报, 2016, 27(S2): 220-233. http://www.jos.org.cn/1000-9825/16036.htm http://www.jos.org.cn/1000-9825/16036.htm .
Guo X Y, Kurita T, Asano C M, et al. Visual complexity assessment of painting images[C]//Proceedings of 2013 IEEE International Conference on Image Processing. Melbourne, VIC, Australia: IEEE, 2013: 388-392.[ DOI: 10.1109/ICIP.2013.6738080 http://dx.doi.org/10.1109/ICIP.2013.6738080 ]
Ishihara S. Ishihara's test for colour-blindness[EB/OL]. [2019-03-15] . https://www.researchgate.net/publication/246557128_Ishihara's_test_for_colour-blindness https://www.researchgate.net/publication/246557128_Ishihara's_test_for_colour-blindness .
Kang D, Shim H, Yoon K. A method for extracting emotion using colors comprise the painting image[J]. Multimedia Tools and Applications, 2018, 77(4): 4985-5002.[DOI: 10.1007/s11042-017-4667-0]
Nascimento S M C, Linhares J M M, Montagner C, et al. The colors of paintings and viewers' preferences[J]. Vision Research, 2017, 130: 76-84.[DOI: 10.1016/j.visres.2016.11.006]
Li X J. Current status and trends in the analysis of eye movements in psychological research[J]. Journal of Shanxi Datong University: Natural Science, 2007, 23(5): 69-71, 75.
李晓娟.眼动方法在心理学研究中的现状及其趋势[J].山西大同大学学报:自然科学版, 2007, 23(5): 69-71, 75.[DOI: 10.3969/j.issn.1674-0874.2007.02.023]
Lyu X C. Research of figure painting aesthetic based on eye-tracker[D]. Tianjin: Tianjing University, 2014.
吕晓川.基于眼动仪的人物画审美研究[D].天津: 天津大学, 2014.
Fan Z B, Zhang K, Zheng X J S. Evaluation and analysis of white space in Wu Guanzhong's Chinese paintings[J]. Leonardo, 2017, 52(2): 111-116.[DOI: 10.1162/LEON_a_01409]
Fan Z B, Zheng X J S, Zhang K. Computational analysis and eye movement experiments of white space in Chinese paintings[C]//Proceedings of 2015 IEEE International Conference on Progress in Informatics and Computing. Nanjing, China: IEEE, 2016: 301-306.[ DOI: 10.1109/PIC.2015.7489858 http://dx.doi.org/10.1109/PIC.2015.7489858 ]
Wallraven C, Cunningham D, Rigau J, Feixas M. Aesthetic appraisal of art-from eye movements to computers[C]//Proceedings of Eurographics Conference on Computational Aesthetics in Graphics. Eurographics Association, 2009: 137-144.
Krejtz K, Duchowski A, Szmidt T, et al. Gaze transition entropy[J]. ACM Transactions on Applied Perception, 2015, 13(1): 4.[DOI: 10.1145/2834121]
Park S A, Yun K, Jeong J. Reappraising abstract paintings after exposure to background information[J]. PLoS One, 2015, 10(5): e0124159.[DOI: 10.1371/journal.pone.0124159]
Wang W N, Yi J J, He Q H. Review for computational image aesthetics[J]. Journal of Image and Graphics, 2012, 17(8): 893-901.
王伟凝, 蚁静缄, 贺前华.可计算图像美学研究进展[J].中国图象图形学报, 2012, 17(8): 893-901.[DOI: 10.11834/jig.20120801]
Hoenig F. Defining computational aesthetics[C]//Proceedings of Computational Aesthetics'05 Proceedings of the First Eurographics conference on Computational Aesthetics in Graphics, Visualization and Imaging. Girona, Spain: Eurographics Association Aire-la-Ville, 2005: 13-18.[ DOI: 10.2312/COMPAESTH/COMPAESTH05/013-018 http://dx.doi.org/10.2312/COMPAESTH/COMPAESTH05/013-018 ]
Brachmann A, Redies C. Computational and experimental approaches to visual aesthetics[J]. Frontiers in Computational Neuroscience, 2017, 11: 102.[DOI: 10.3389/fncom.2017.00102]
Keren D. Painter identification using local features and naive Bayes[C]//Proceedings of Object Recognition Supported by User Interaction for Service Robots. Quebec City, Canada: IEEE, 2002: 474-477.[ DOI: 10.1109/ICPR.2002.1048341 http://dx.doi.org/10.1109/ICPR.2002.1048341 ]
Günsel B, Sariel S, Icoglu O. Content-based access to art paintings[C]//Proceedings of 2005 IEEE International Conference on Image Processing. Genova, Italy: IEEE, 2005: 558-561.[ DOI: 10.1109/ICIP.2005.1530116 http://dx.doi.org/10.1109/ICIP.2005.1530116 ]
Icoglu O, Gunsel B, Sariel S. Classification and indexing of paintings based on art movements[C]//Proceedings of the 12th European Signal Processing Conference. Vienna, Austria: IEEE, 2004: 749-752.
Widjaja I, Leow W K, Wu F C. Identifying painters from color profiles of skin patches in painting images[C]//Proceedings of 2003 International Conference on Image Processing. Barcelona, Spain: IEEE, 2003.[ DOI: 10.1109/ICIP.2003.1247095 http://dx.doi.org/10.1109/ICIP.2003.1247095 ]
Khan F S, Van De Weijer J, Vanrell M. Who painted this painting?[C]//Proceedings of 2010 CREATE Conference (Gjøvik), 329-333. http://www.cat.uab.cat/Public/Publications/2010/SVV2010/ http://www.cat.uab.cat/Public/Publications/2010/SVV2010/
Wang Z, Sun M J, Han Y H, et al. Supervised heterogeneous sparse feature selection for Chinese paintings classification[J]. Journal of Computer-Aided Design&Computer Graphics, 2013, 25(12): 1848-1855.
王征, 孙美君, 韩亚洪, 等.监督式异构稀疏特征选择的国画分类和预测[J].计算机辅助设计与图形学学报, 2013, 25(12): 1848-1855.
Li Y Z, Sheng J C, Hua B. Improved embedded learning for classification of Chinese paintings[J]. Journal of Computer-Aided Design&Computer Graphics, 2018, 30(5): 149-156.
李玉芝, 盛家川, 华斌.中国画分类的改进嵌入式学习算法[J].计算机辅助设计与图形学学报, 2018, 30(5): 149-156.[DOI: 10.3724/SP.J.1089.2018.16539]
Jiang S Q, Huang Q M, Ye Q X, et al. An effective method to detect and categorize digitized traditional Chinese paintings[J]. Pattern Recognition Letters, 2006, 27(7): 734-746.[DOI: 10.1016/j.patrec.2005.10.017]
Chen J J, Du Y J, Li H F. Feature extraction and classification of Chinese painting[J]. Computer Engineering and Applications, 2008, 44(15): 166-169.
陈俊杰, 杜雅娟, 李海芳.中国画的特征提取及分类[J].计算机工程与应用, 2008, 44(15): 166-169.[DOI: 10.3778/j.issn.1002-8331.2008.15.052]
Shamir L, Macura T, Orlov N, et al. Impressionism, expressionism, surrealism: automated recognition of painters and schools of art[J]. ACM Transactions on Applied Perception, 2010, 7(2): 1-17.[DOI: 10.1145/1670671.1670672]
Čuljak M, MikušB, JežK, et al. Classification of art paintings by genre[C]//Proceedings of the 34th International Convention. Opatija, Croatia: IEEE, 2011, 1634-1639. https://ieeexplore.ieee.org/document/5967323 https://ieeexplore.ieee.org/document/5967323 .
Arora R S, Elgammal A. Towards automated classification of fine-art painting style: a comparative study[C]//Proceedings of the 21st International Conference on Pattern Recognition. Tsukuba, Japan: IEEE, 2012: 3541-3544.[ DOI: 10.7282/T3XP73QP http://dx.doi.org/10.7282/T3XP73QP ]
Sheng J C. Automatic categorization of traditional Chinese paintings based on wavelet transform[J]. Computer Science, 2014, 41(2): 317-319.
盛家川.基于小波变换的国画特征提取及分类[J].计算机科学, 2014, 41(2): 317-319.[DOI: 10.3969/j.issn.1002-137X.2014.02.069]
Condorovici R G, Florea C, Vertan C. Automatically classifying paintings with perceptual inspired descriptors[J]. Journal of Visual Communication and Image Representation, 2015, 26: 222-230.[DOI: 10.1016/j.jvcir.2014.11.016]
Tappert C, Cha S H, Lombardi T E. The classification of style in fine-art painting[M]. New York, NY, USA: Pace University, 2005.
Guo X Y, Qian Y H, Li L, et al. Assessment model for perceived visual complexity of painting images[J]. Knowledge-Based Systems, 2018, 159: 110-119.[DOI: 10.1016/j.knosys.2018.06.006]
Condorovici R, Florea C, Vertan C. Author identification for digitized paintings collections[C]//Proceedings of International Symposium on Signals, Circuits and Systems. Iasi, Romania: IEEE, 2013: 1-4.[ DOI: 10.1109/ISSCS.2013.6651197 http://dx.doi.org/10.1109/ISSCS.2013.6651197 ]
Li J, Wang J Z. Studying digital imagery of ancient paintings by mixtures of stochastic models[J]. IEEE Transactions on Image Processing, 2014, 13(3): 340-353.[DOI: 10.1109/TIP.2003.821349]
Zujovic J, Gandy L, Friedman S E, et al. Classifying paintings by artistic genre: an analysis of features & classifiers[C]//Proceedings of 2009 IEEE International Workshop on Multimedia Signal Processing. Rio De Janeiro, Brazil: IEEE, 2009: 1-5.[ DOI: 10.1109/MMSP.2009.5293271] http://dx.doi.org/10.1109/MMSP.2009.5293271] .
Karayev S, Trentacoste M, Han H, et al. Recognizing image style[C]//Proceedings of the British Machine Vision Conference /arXiv preprint arXiv: 1311. 3715, 2013. 2.[ DOI: 10.5244/C.28.122 http://dx.doi.org/10.5244/C.28.122 ]
Tan W R, Chan C S, Aguirre H E, et al. Ceci n'est pas une pipe: a deep convolutional network for fine-art paintings classification[C]//Proceedings of 2016 IEEE International Conference on Image Processing. Phoenix, AZ, USA: IEEE, 3703-3707.[ DOI: 10.1109/ICIP.2016.7533051 http://dx.doi.org/10.1109/ICIP.2016.7533051 ]
Sartori A, Yan Y, Salah A A A, et al. Looking at Mondrian's victory Boogie-Woogie: what do i feel?[C]//Proceedings of the 24th International Conference on Artificial Intelligence. Buenos Aires, Argentina: AAAI Press, 2015: 2503-2509. https://dl.acm.org/citation.cfm?id=2832581.2832599 https://dl.acm.org/citation.cfm?id=2832581.2832599
Sartori A,Şenyazar B, Salah A A A, et al. Emotions in abstract art: does texture matter?[C]//Proceedings of International Conference on Image Analysis and Processing. Cham: Springer, 2015: 671-682.[ DOI: 10.1007/978-3-319-23231-7_60 http://dx.doi.org/10.1007/978-3-319-23231-7_60 ]
Shen J L. Stochastic modeling western paintings for effective classification[J]. Pattern Recognition, 2009, 42(2): 293-301.[DOI: 10.1016/j.patcog.2008.04.016]
Cetinic E, Grgic S. Automated painter recognition based on image feature extraction[C]//Proceedings of ELMAR-2013. Zadar, Croatia: IEEE, 2013: 19-22.
Li J, Yao L, Hendriks E, et al. Rhythmic brushstrokes distinguish van Gogh from his contemporaries: findings via automated brushstroke extraction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(6): 1159-1176.[DOI: 10.1109/TPAMI.2011.203]
Siddiquie B, Vitaladevuni S N, Davis L S. Combining multiple kernels for efficient image classification[C]//Proceedings of 2009 Workshop on Applications of Computer Vision. Snowbird, UT, USA: IEEE, 2009: 1-8.[ DOI: 10.1109/WACV.2009.5403040 http://dx.doi.org/10.1109/WACV.2009.5403040 ]
Ivanova K, Stanchev P, Velikova E, et al. Features for art painting classification based on vector quantization of MPEG-7 descriptors[C]//Proceedings of International Conference on Data Engineering and Management. Berlin, Heidelberg, Germany: Springer, 2012: 146-153.[ DOI: 10.1007/978-3-642-27872-3_22 http://dx.doi.org/10.1007/978-3-642-27872-3_22 ]
Torresani L, Szummer M, Fitzgibbon A. Efficient object category recognition using classemes[C]//Proceedings of the 11th European Conference on Computer Vision. Heraklion, Crete, Greece: Springer, 2010: 776-789.[ DOI: 10.1007/978-3-642-15549-9_56 http://dx.doi.org/10.1007/978-3-642-15549-9_56 ]
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada: Curran Associates Inc., 2012: 1097-1105.[ DOI: 10.1145/3065386 http://dx.doi.org/10.1145/3065386 ]
Mather G. Aesthetic judgement of orientation in modern art[J]. i-Perception, 2012, 3(1): 18-24.[DOI: 10.1068/i0447aap]
Liu J, Dong W M, Zhang X P, et al. Orientation judgment for abstract paintings[J]. Multimedia Tools and Applications, 2017, 76(1): 1017-1036.[DOI: 10.1007/s11042-015-3104-5]
Wang X D, Du Q, Wang Q Q, et al. Based on logistic regression analysis of factors of rural elderly population in Shandong province and the influence of marital satisfaction[J]. Guide of Scitech Magazine, 2014, (18): 274-275.
王新东, 杜清, 王晴晴, 等.基于Logistic回归的山东省农村老年人婚姻满意度与影响因素分析[J].科技致富向导, 2014, (18): 274-275.
Li T. Evaluation of technological innovation strength of solar power generation enterprises in Hebei province[J]. Economic Research Guide, 2019, (3): 6-7.
李婷.河北省太阳能发电企业科技创新实力评价[J].经济研究导刊, 2019, (3): 6-7.
Wang Y, Takatsuka M. A framework towards quantified artistic influences analysis[C]//Proceedings of 2012 International Conference on Digital Image Computing Techniques and Applications. Fremantle, WA, Australia: IEEE, 2013: 1-8.[ DOI: 10.1109/DICTA.2012.6411680 http://dx.doi.org/10.1109/DICTA.2012.6411680 ]
Liu X W, Pu Y Y, Huang Y Q, et al. Quantitative statistics and analysis for painting visual art style[J]. Journal of Frontiers of Computer Science&Technology, 2013, 7(10): 942-952.
刘晓巍, 普园媛, 黄亚群, 等.绘画视觉艺术风格的量化统计与分析[J].计算机科学与探索, 2013, 7(10): 942-952.[DOI: 10.3778/j.issn.1673-9418.1306013]
Abe K, Saleh B, Elgammal A. An early framework for determining artistic influence[C]//Proceedings of International Workshops on New Trends in Image Analysis and Processing. Berlin, Germany: Springer-Verlag, 2013: 198-207.[ DOI: 10.1007/978-3-642-41190-8_22 http://dx.doi.org/10.1007/978-3-642-41190-8_22 ]
相关作者
相关机构
京公网安备11010802024621