理想投影椭圆约束下的鱼眼镜头内部参数标定
Fish-eye lens calibration by ideal projection ellipse constraints
- 2019年24卷第11期 页码:1972-1984
收稿:2019-03-13,
修回:2019-4-30,
录用:2019-5-7,
纸质出版:2019-11-16
DOI: 10.11834/jig.190061
移动端阅览

浏览全部资源
扫码关注微信
收稿:2019-03-13,
修回:2019-4-30,
录用:2019-5-7,
纸质出版:2019-11-16
移动端阅览
目的
2
鱼眼镜头是发展轻、小型全方位视觉系统的理想光学传感器,但由于镜头焦距短、视场大及光学原理约束,鱼眼图像存在严重畸变,为此提出一种高精度、应用方式灵活的鱼眼镜头内部参数标定方法,以期将鱼眼图像转换成符合人眼视觉习惯的平面透视投影图像。
方法
2
从球面透视投影模型出发,首先分析给出空间直线在水平面上的理想投影椭圆约束,进而结合椭圆严格几何特性建立误差方程对鱼眼相机等效焦距
$$f$$
,纵横比
$$A$$
及径向畸变参数
$$k$$
1
,
$$k$$
2
进行最小二乘估计,最后利用估计参数对鱼眼图像进行立方盒展开实现平面透视纠正目的。
结果
2
对某型号定焦鱼眼相机的棋盘格影像多视标定及网上鱼眼图像单视自标定结果表明,本文方法标定参数对鱼眼图像不同区域的平面透视纠正效果稳健、精度高。多视标定参数均方根误差(RMSE)约0.1像素,纠正影像上直线拟合误差RMSE约0.2像素,总体效果略优于对比文献方法;单视自标定参数误差RMSE约0.3像素,影像纠正范围、直线透视特性保持明显优于对比文献方法及商业软件DXO(DXO Optics Pro)。
结论
2
本文方法标定参数少、计算过程简单且对标定参照物要求不高,对于具有大量直线的人工场景理论上可实现自标定,应用价值较高。
Objective
2
Fish-eye lens is an ideal optical sensor to develop light and small omnidirectional vision systems. Due to the characteristics of large field of view and low cost
it is widely used in various places such as security monitoring. Based on a large number of original fisheye video materials
it has the potential for in-depth research and full exploitation. Therefore
the calibration of fisheye cameras needs to obtain the internal parameters of the images. How to improve the indoor and outdoor aspects of the city is imperative. The calibration efficiency of model fisheye camera is a valuable and challenging research work. However
due to the limitation of short focal length
large field of view and special optical principle
fish-eye images will produce serious barrel distortion
which is not conducive to the subsequent development and application of video images. Constraints of optical principle it is expected to be transformed into plane perspective projection
which conforms to human visual habits
by a set of high-precision parameters associated with the optical imaging model of the fish-eye lens. To this end
a high-precision and flexible method for calibrating the internal parameters of fish-eye lens is proposed in this study.
Method
2
The calibration is achieved through the following steps: Firstly
we need to obtain the initial internal parameters of fisheye image. According to the principle that the spatial line is imaged as an elliptic curve on the image
we extract the image elliptic curve. The specific methods are as follows: a) obtain the coordinates of the curve points on the image by image segmentation
b) obtain the general curve equation of the ellipse by curve fitting
than decompose the general equation into the ellipse long and short axis length and image principal point used as initial value. Secondly
ideal projection ellipse constraints (IPECs) for any space line on the horizontal plane under spherical perspective projection are mathematically set. The constraints are as follows: a) the half length of the long axis of projection ellipse of different space straight lines is constantly equal to the radius of the projection sphere; and b) the length ratio of long axis to short axis of the projection ellipse is constant for any one space line when the radius of the projection sphere is changed. Thirdly
a nonlinear function is built on the basis of the proposed IPECs and the strict geometric properties of ellipses to conduct an iterative least square estimation for the uncalibrated fish-eye lens parameters
namely
focal length f
aspect ratio
$$A$$
and distortion parameters
$$k$$
1
$$k$$
2
. Finally
the distorted fish-eye images are corrected by using the estimated lens parameters and cube-box expansion.
Result
2
One focus-fixed fish-eye camera is selected to test the proposed approach under multiple-view condition. In addition
several parameter-free fish-eye images downloaded from the Internet are selected to test the proposed approach under single-view condition. Experimental results show that stable and high-quality correction is achieved in different areas of fish-eye images by using the estimated calibration parameters. The root-mean-square error (RMSE) in multiple-view calibration for the selected fish-eye camera is approximately 0.1 pixel
and the straight-line fitness RMSE in the corrected fish-eye image is only approximately 0.2 pixel. These results are slightly better than the results produced by an online calibration toolbox. Compared with our method in which only a small number of lens internal parameters needed to be solved directly
the online calibration toolbox is more complex in model characterization and estimation calculation
in which two additional radial distortion parameters
$$k$$
3
and
$$k$$
4
are added to characterize the internal parameters of fish-eye lens. The external parameters of the camera are also required for simultaneous estimation. Although our method uses the straight line features on a chessboard
no requirement is set for its spatial (physical) accuracy (position and direction). By contrast
the online calibration toolbox depends fundamentally on the interposition accuracy of a chessboard's corner points; multiple photographs of a small-sized chessboard at a specific angle are often required for ideal control conditions because photographs of a large-sized chessboard with high accuracy are difficult to obtain. The single-view calibration RMSE is approximately 0.3 pixel
and its straight-line geometry preservation on corrected fish-eye images is obviously better than the results produced by popular commercial software DXO toolbox.
Conclusion
2
The proposed calibration can be realized with few calibration parameters and a simple calculation that allows it to be implemented via self-calibration for artificial scenes with a large number of lines. This characteristic makes the calibration useful in applications such as panorama surveillance
3D reconstruction
and robot navigation.
Feng W J, Zhang B F, Cao Z L. Omni-directional vision parameter calibration and rectification based on fish-eye lens[J]. Journal of Tianjin University, 2011, 44(5):417-424.
冯为嘉, 张宝峰, 曹作良.基于鱼眼镜头的全方位视觉参数标定与畸变矫正[J].天津大学学报, 2011, 44(5):417-424. [DOI:10.3969/j.issn.0493-2137.2011.05.008]
Zhang H B, Yu Y, Li L, et al. Scene roaming method of fisheye image based on viewpoint correction[J]. Journal of Graphics, 2014, 35(3):435-441.
张海彬, 余烨, 李琳, 等.基于视点纠正的鱼眼图像场景化漫游方法[J].图学学报, 2014, 35(3):435-441. [DOI:10.3969/j.issn.2095-302X.2014.03.018]
Li H B, Chu G Y, Zhang Q, et al. Space point positioning based on optimization of fisheye lens imaging model[J]. Acta Optica Sinica, 2015, 35(7):0715003.
李海滨, 褚光宇, 张强, 等.基于优化的鱼眼镜头成像模型的空间点定位[J].光学学报, 2015, 35(7):0715003. [DOI:10.3788/aos201535.0715003]
Kannala J, Brandt S S. A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(8):1335-1340.[DOI:10.1109/TPAMI.2006.153]
Schneider D, Schwalbe E, Maas H G. Validation of geometric models for fisheye lenses[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(3):259-266.[DOI:10.1016/j.isprsjprs.2009.01.001]
Wei J, Li C F, Hu S M, et al. Fisheye video correction[J]. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(10):1771-1783.[DOI:10.1109/TVCG.2011.130].
Wang Y Z. Fish-eye Lens Optics[M]. Beijing:Science Press, 2006:5-15.
王永仲.鱼眼镜头光学[M].北京:科学出版社, 2006:5-15.
Huang Y D, Su H M. A simple transforming model from fisheye image to perspective projection image[J]. Journal of System Simulation, 2005, 17(1):29-32, 52.
黄有度, 苏化明.一种鱼眼图象到透视投影图象的变换模型[J].系统仿真学报, 2005, 17(1):29-32, 52. [DOI:10.3969/j.issn.1004-731X.2005.01.007]
Huang F Y, Wang Y Z, Shen X J, et al. Method for calibrating the fisheye distortion center[J]. Applied Optics, 2012, 51(34):8169-8176.[DOI:10.1364/AO.51.008169].
Lin Y, Gong X J, Liu J L. Calibration of fisheye cameras based on the viewing sphere[J]. Journal of Zhejiang University:Engineering Science, 2013, 47(8):1500-1507.
林颖, 龚小谨, 刘济林.基于单位视球的鱼眼相机标定方法[J].浙江大学学报:工学版, 2013, 47(8):1500-1507.
Wu Z J, Wu Q Y, Zhang B C. A new calibration method for fisheye lens based on spherical model[J]. Chinese Journal of Lasers, 2015, 42(5):0508006.
吴泽俊, 吴庆阳, 张佰春.一种新的基于球面模型的鱼眼镜头标定方法[J].中国激光, 2015, 42(5):0508006. [DOI:10.3788/cjl201542.0508006]
Pi Y D, Li X, Chen Z Y, et al. Calibration and rectification of fisheye images based on three-dimensional control field[J]. Acta Optica Sinica, 2017, 37(1):0115001.
皮英冬, 李欣, 陈智勇, 等.基于三维控制场的鱼眼影像检校和纠正方法[J].光学学报, 2017, 37(1):0115001. [DOI:10.3788/aos201737.0115001]
Kanatani K. Calibration of ultrawide fisheye lens cameras by eigenvalue minimization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(4):813-822.[DOI:10.1109/TPAMI.2012.146]
Zhang M, Yao J, Xia M H, et al. Line-based multi-label energy optimization for fisheye image rectification and calibration[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015: 4137-4145.[D OI: 10.1109/CVPR.2015.7299041 http://dx.doi.org/10.1109/CVPR.2015.7299041 ]
Aghayari S, Saadatseresht M, Omidalizarandi M, et al. Geometric calibration of full spherical panoramic Ricoh-theta camera[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, 4-1/W1:237-245.[DOI:10.5194/isprs-annals-Ⅳ-1-W1-237-2017]
Ying X H, Hu Z Y. Fisheye lense distortion correction using spherical perspective projection constraint[J]. Chinese Journal of Computers, 2003, 26(12):1702-1708.
英向华, 胡占义.一种基于球面透视投影约束的鱼眼镜头校正方法[J].计算机学报, 2003, 26(12):1702-1708. [DOI:10.3321/j.issn:0254-4164.2003.12.013]
Zheng L P, Xu G Q, Li L, et al. Imaging modeling and correction of nonlinear distortion distribution ellipse fish-eye lens[J]. Chinese Journal of Scientific Instrument, 2012, 33(6):1331-1337.
郑利平, 徐刚强, 李琳, 等.非线性畸变分布椭圆鱼眼镜头成像建模和校正[J].仪器仪表学报, 2012, 33(6):1331-1337. [DOI:10.3969/j.issn.0254-3087.2012.06.019]
Liao S Z, Gao P H, Su Y, et al. A geometric rectification method for lens camera[J]. Journal of Image and Graphics, 2000, 5(7):593-596.
廖士中, 高培焕, 苏艺, 等.一种光学镜头摄像机图像几何畸变的修正方法[J].中国图像图形学报, 2000, 5(7):593-596. [DOI:10.11834/jig.20000711]
Yang L, Cheng Y. The designing methods of fish-eye distortion correction using latitude-longitude projection[J]. Journal of Engineering Graphics, 2010, 31(6):19-22.
杨玲, 成运.应用经纬映射的鱼眼图像校正设计方法[J].工程图学学报, 2010, 31(6):19-22. [DOI:10.3969/j.issn.1003-0158.2010.06.004]
Wei L S, Zhou S W, Zhang P G, et al. Double longitude model based correction method for fish-eye image distortion[J]. Chinese Journal of Scientific Instrument, 2015, 36(2):377-385.
魏利胜, 周圣文, 张平改, 等.基于双经度模型的鱼眼图像畸变矫正方法[J].仪器仪表学报, 2015, 36(2):377-385. [DOI:10.19650/j.cnki.cjsi.2015.02.016]
Xu B, Liu L, Liu Y H, et al. A calibration method for fish-eye cameras based on pinhole model[J]. Acta Automatica Sinica, 2014, 40(4):653-659.
涂波, 刘璐, 刘一会, 等.一种扩展小孔成像模型的鱼眼相机矫正与标定方法[J].自动化学报, 2014, 40(4):653-659. [DOI:10.3724/SP.J.1004.2014.00653]
Jia Y D, Lü H J, Xu A, et al. Fish-eye lens camera calibration for stereo vision system[J]. Chinese Journal of Computers, 2000, 23(11):1215-1219.
贾云得, 吕宏静, 徐岸, 等.一种鱼眼镜头成像立体视觉系统的标定方法[J].计算机学报, 2000, 23(11):1215-1219. [DOI:10.3321/j.issn:0254-4164.2000.11.016]
Ramalingam S, Sturm P. A unifying model for camera calibration[J]. IEEE Transactions on Pattern Analysisand Machine Intelligence, 2017, 39(7):1309-1319.[DOI:10.1109/TPAMI.2016.2592904]
Hughes C, Denny P, Jones E, et al. Accuracy of fish-eye lens models[J]. Applied Optics, 2010, 49(17):3338-3347.[DOI:10.1364/AO.49.003338]
Ray A, Srivastava D C. Non-linear least squares ellipse fitting using the genetic algorithm with applications to strain analysis[J]. Journal of Structural Geology, 2008, 30(12):1593-1602.[DOI:10.1016/j.jsg.2008.09.003]
Bouguet J Y. Camera calibration toolbox for Matlab[EB/OL].[2019-02-28] 2015-08-14. http://www.vision.caltech.edu/bouguetj/calib_doc http://www.vision.caltech.edu/bouguetj/calib_doc .
Lu W, Tan J L. Detection of incomplete ellipse in images with strong noise by iterative randomized Hough transform (IRHT)[J]. Pattern Recognition, 2008, 41(4):1268-1279.[DOI:10.1016/j.patcog.2007.09.006]
相关文章
相关作者
相关机构
京公网安备11010802024621