参数可调的通用半正交图像矩模型
General semi-orthogonal moments with parameter modulation
- 2019年24卷第10期 页码:1711-1727
收稿:2019-03-08,
修回:2019-4-14,
录用:2019-4-21,
纸质出版:2019-10-16
DOI: 10.11834/jig.190060
移动端阅览

浏览全部资源
扫码关注微信
收稿:2019-03-08,
修回:2019-4-14,
录用:2019-4-21,
纸质出版:2019-10-16
移动端阅览
目的
2
为了提高以正交多项式为核函数构造的高阶矩数值的稳定性,增强低阶矩抗噪和滤波的能力,将仅具有全局描述能力的常规正交矩推广到可以局部化提取图像特征的矩模型,从频率特性分析的角度定义一种参数可调的通用半正交矩模型。
方法
2
首先,对传统正交矩的核函数进行合理的修正,以修正后的核函数(也称基函数)替代传统正交矩中的原核函数,使其成为修改后的特例之一。经过修正后的基函数可以有效消除图像矩数值不稳定现象。其次,采用时域的分析方法能够对图像的低阶矩作定量的分析,但无法对图像的高频部分(对应的高阶矩)作更合理的表述。因此提出一种时—频对应的方法来分析和增强不同阶矩的稳定性,通过对修正后核函数的频带宽度微调可以建立性能更优的不同阶矩。最后,利用构建的半正交—三角函数矩研究和分析了通用半正交矩模型的特点及性质。
结果
2
将三角函数为核函数的图像矩与现有的Zernike、伪Zernike、正交傅里叶—梅林矩及贝塞尔—傅里叶矩相比,由于核函数组成简单,且其值域恒定在[-1
1]区间,因此在图像识别领域具有更快的计算速度和更高的稳定性。
结论
2
理论分析和一系列相关图像的仿真实验表明,与传统的正交矩相比,在数值稳定性、图像重构、图像感兴趣区域(ROI)特征检测、噪声鲁棒性测试及不变性识别方面,通用的半正交矩性能及效果更优。
Objective
2
This study aims to improve the numerical stability of high-order moments and the ability of anti-noise and filtering for low-order moments
which are defined with orthogonal polynomial kernel-functions. A general semi-orthogonal moments with parameter-modulated is defined from frequency-response analysis
which is a generalization of the traditional orthogonal moments. This paper mainly attempts to study from the following three aspects:1) we take on the challenge of studying the influence of the performance of semi-orthogonal kernel-functions onto an image between orthogonal and non-orthogonal moments and design a general semi-orthogonal moment theory model for different orders; 2) we take on the challenge of trying to establish a theoretical analysis model of image moments in the frequency domain; by adjusting the bandwidth of the basis functions and the corresponding cut-off frequencies for various moments
we can analyze their effects on low-order moments
middle-order moments
and high-order moments and further study the advantages and disadvantages of reconstructed images by using different order moments (low-order and high-order); 3) to solve the traditional orthogonal moments that can only describe the characteristics of the image globally
we take on the challenge of constructing image local feature analysis method and establishing the local image moments of region of interest (ROI) feature extraction.
Method
2
The kernel functions of the traditional orthogonal moments are modified appropriately by using the modified kernel-functions (basis functions) to replace the original kernel-functions in the traditional orthogonal moments
making it a special case for modified moments. The modified basis functions can effectively eliminate the numerical instability of image moments. The low-order moments of an image can be quantitatively analyzed by time-domain analysis method
but the high-frequency of an image (corresponding high-order moments) cannot be described reasonably. Therefore
from the perspective of frequency domain
a time-frequency correspondence method is proposed to analyze and enhance the stability of different order moments. The main idea of this method is to treat the representation of the constructed image moments in the frequency domain as a filter (such as low-pass filtering). The bandwidth corresponding to the kernel functions will be wider when using low-order moments
and the cut-off frequency will be attenuated as much as possible. Meanwhile
the bandwidth corresponding to the high-order moments is narrow
and the cutoff frequency attenuates as fast as possible. In summary
various types of optimal-order moments can be established by slightly adjusting the band-width of the modified kernel function. Finally
the semi-orthogonal trigonometric function moments (SOTMs) are implemented to investigate the properties of the general semi-orthogonal moments. Compared with those of existing Zernike
pseudo-Zernike
orthogonal Fourier-Mellin moments
and Bessel-Fourier moments (the above image moments are composed of high-order polynomials)
the image moments with triangular functions as basis have faster computational speed and lower computational complexity in image recognition due to their simple composition and the magnitude located in [-1
1].
Result
2
A semi-orthogonal triangular function moment is proposed to generalize the triangular functions
which can construct corresponding image moments in different coordinates space
and to improve the stability and accuracy of image reconstruction. Moments established by triangular functions are used as kernel functions
as verified by theoretical analysis and related simulation experiments.
Conclusion
2
Theoretical analysis and a series of simulation experiments for correlated images demonstrate that
the general semi-orthogonal moments outperform corresponding orthogonal moments (e.g.
Zernike
pseudo-Zernike
orthogonal Fourier-Mellin moments
and Bessel-Fourier moments) in terms of the numerical stability
image-reconstruction
image ROI feature detection
noise robustness testing
and invariant recognition.
Honarvar B, Paramesran R, Lim C L. Image reconstruction from a complete set of geometric and complex moments[J]. Signal Processing, 2014, 98:224-232.[DOI:10.1016/j.sigpro.2013.11.037]
Yang B, Dai M. Image reconstruction from continuous Gaussian-Hermite moments implemented by discrete algorithm[J]. Pattern Recognition, 2012, 45(4):1602-1616.[DOI:10.1016/j.patcog.2011.10.025]
Qu Y D, Cui C S, Chen S B, et al. A fast subpixel edge detection method using Sobel-Zernike moments operator[J]. Image and Vision Computing, 2005, 23(1):11-17.[DOI:10.1016/j.imavis.2004.07.003]
Ghosal S, Mehrotra R. A moment-based unified approach to image feature detection[J]. IEEE Transactions on Image Processing, 1997, 6(6):781-793.[DOI:10.1109/83.585230]
Hmimid A, Sayyouri M, Qjidaa H. Fast computation of separable two-dimensional discrete invariant moments for image classification[J]. Pattern Recognition, 2015, 48(2):509-521.[DOI:10.1016/j.patcog.2014.08.020]
Shao Z H, Shang Y Y, Zhang Y, et al. Robust watermarking using orthogonal Fourier-Mellin moments and chaotic map for double images[J]. Signal Processing, 2016, 120:522-531.[DOI:10.1016/j.sigpro.2015.10.005]
Wang X Y, Shi Q L, Wang S M, et al. A blind robust digital watermarking using invariant exponent moments[J]. AEU-International Journal of Electronics and Communications, 2016, 70(4):416-426.[DOI:10.1016/j.aeue.2016.01.00]
Xiao B, Lu G, Zhang Y H, et al. Lossless image compression based on integer discrete Tchebichef transform[J]. Neurocomputing, 2016, 214:587-593.[DOI:10.1016/j.neucom.2016.06.050]
Khotanzad A, Hong Y H. Invariant image recognition by Zernike moments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(5):489-497.[DOI:10.1109/34.55109]
Choi M S, Kim W Y. A novel two stage template matching method for rotation and illumination invariance[J]. Pattern Recognition, 2002, 35(1):119-129.[DOI:10.1016/s0031-3203(01)00025-5]
Zhang H, Shu H Z, Coatrieux G, et al. Affine Legendre moment invariants for image watermarking robust to geometric distortions[J]. IEEE Transactions on Image Processing, 2011, 20(8):2189-2199.[DOI:10.1109/TIP.2011.2118216]
Zhang H, Shu H Z, Han G N, et al. Blurred image recognition by Legendre moment invariants[J]. IEEE Transactions on Image Processing, 2010, 19(3):596-611.[DOI:10.1109/tip.2009.2036702]
Deng A W, Wei C H, Gwo C Y. Stable, fast computation of high-order Zernike moments using a recursive method[J]. Pattern Recognition, 2016, 56:16-25.[DOI:10.1016/j.patcog.2016.02.014]
Singh C, Upneja R. Accurate calculation of high order pseudo-Zernike moments and their numerical stability[J]. Digital Signal Processing, 2014, 27:95-106.[DOI:10.1016/j.dsp.2013.12.004]
Galigekere R R, Holdsworth D W, Swamy M N S, et al. Moment patterns in the Radon space[J]. Optical Engineering, 2000, 39(4):1088-1097.[DOI:10.1117/1.602471]
Xiao B, Cui J T, Qin H X, et al. Moments and moment invariants in the Radon space[J]. Pattern Recognition, 2015, 48(9):2772-2784.[DOI:10.1016/j.patcog.2015.04.007]
Singh C, Aggarwal A. A comparative performance analysis of DCT-based and Zernike moments-based image up-sampling techniques[J]. Optik, 2016, 127(4):2158-2164.[DOI:10.1016/j.ijleo.2015.11.115]
Shao Z H, Shu H Z, Wu J S, et al. Quaternion Bessel-Fourier moments and their invariant descriptors for object reconstruction and recognition[J]. Pattern Recognition, 2014, 47(2):603-611.[DOI:10.1016/j.patcog.2013.08.016]
Guf J S, Jiang W S. The Haar wavelets operational matrix of integration[J]. International Journal of Systems Science, 1996, 27(7):623-628.[DOI:10.1080/00207729608929258]
Ferrer H JA, Verduzco I D, Martinez E V. Fourier and Walsh digital filtering algorithms for distance protection[J]. IEEE Transactions on Power Systems, 1996, 11(1):457-462.[DOI:10.1109/59.486133]
Hu M K. Visual pattern recognition by moment invariants[J]. IRE Transactions on Information Theory, 1962, 8(2):179-187.[DOI:10.1109/TIT.1962.1057692]
Abo-Zaid A, Hinton O R, Horne E. About moment normalization and complex moment descriptors[C]//Proceedings of the 4th International Conference Cambridge on Pattern Recognition. Berlin, Heidelberg, Germany: Springer-Verlag, 1988: 399-409.[ DOI: 10.1007/3-540-19036-8_-40 http://dx.doi.org/10.1007/3-540-19036-8_-40 ]
Flusser J. On the independence of rotation moment invariants[J]. Pattern Recognition, 2000, 33(9):1405-1410.[DOI:10.1016/s0031-3203(99)00127-2]
Ping Z L, Ren H P, Zou J, et al. Generic orthogonal moments:Jacobi-Fourier moments for invariant image description[J]. Pattern Recognition, 2007, 40(4):1245-1254.[DOI:10.1016/j.patcog.2006.07.016]
Ping Z L, Wu R G, Sheng Y L. Image description with Chebyshev-Fourier moments[J]. Journal of the Optical Society of America A, 2002, 19(9):1748-1754.[DOI:10.1364/JOSAA.19.001748]
Ren H P, Liu A Z, Zou J, et al. Character reconstruction with radial-harmonic-Fourier moments[C]//Proceedings of the 4th International Conference on Fuzzy Systems and Knowledge Discovery. Haikou, China: IEEE, 2007: 307-310.[ DOI: 10.1109/FSKD.2007.213 http://dx.doi.org/10.1109/FSKD.2007.213 ]
Xiao B, Wang G Y, Li W S. Radial shifted Legendre moments for image analysis and invariant image recognition[J]. Image and Vision Computing, 2014, 32(12):994-1006.[DOI:10.1016/j.imavis.2014.09.002]
Fu B, Zhou J Z, Li Y H, et al. Image analysis by modified Legendre moments[J]. Pattern Recognition, 2007, 40(2):691-704.[DOI:10.1016/j.patcog.2006.05.020]
Chen W, Cai Z C, Qi D X. Orthogonal Franklin moments and its application for image representation[J]. Chinese Journal of Computers, 2015, 38(6):1140-1147.
陈伟, 蔡占川, 齐东旭.一类新的正交矩-Franklin矩及其图像表达[J].计算机学报, 2015, 38(6):1140-1147. [DOI:10.11897/SP.J.1016.2015.01140]
Mukundan R, Ong S H, Lee P A. Image analysis by Tchebichef moments[J]. IEEE Transactions on Image Processing, 2001, 10(9):1357-1364.[DOI:10.1109/83.941859]
Yap P T, Paramesran R, Ong S H. Image analysis by Krawtchouk moments[J]. IEEE Transactions on Image Processing, 2003, 12(11):1367-1377.[DOI:10.1109/TIP.2003.818019]
Yap P T, Paramesran R, Ong S H. Image analysis using hahn moments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(11):2057-2062.[DOI:10.1109/TPAMI.2007.70709]
Zhu H Q, Shu H Z, Liang J, et al. Image analysis by discrete orthogonal Racah moments[J]. Signal Processing, 2007, 87(4):687-708.[DOI:10.1016/j.sigpro.2006.07.007]
He B, Wang X. Robust digital watermarking image method based on Radon invariant moments[J]. Computer Engineering and Applications, 2010, 46(9):98-101, 106.
何冰, 王晅.基于Radon变换不变矩的鲁棒性数字水印技术[J].计算机工程与应用, 2010, 46(9):98-101, 106. [DOI:10.3778/j.issn.1002-8331.2010.09.029]
Jian J F, Yin Z H, Zhou L H, et al. Target's matching method for the remote sensing image based on the histogram invariant moments[J]. Journal of Xidian University, 2006, 33(4):584-587.
简剑峰, 尹忠海, 周利华, 等.基于直方图不变矩的遥感影像目标匹配方法[J].西安电子科技大学学报:自然科学版, 2006, 33(4):584-587. [DOI:10.3969/j.issn.1001-2400.2006.04.017]
Xiao B, Li L P, Li Y, et al. Image analysis by fractional-order orthogonal moments[J]. Information Sciences, 2017, 382-383:135-149.[DOI:10.1016/j.ins.2016.12.011]
Yang J W, Jin D J, Lu Z D. Fractional order Zernike moment[J]. Journal of Computer-Aided Design&Computer Graphics, 2017, 29(3):479-484.
杨建伟, 金德君, 卢政大.分数阶的Zernike矩[J].计算机辅助设计与图形学学报, 2017, 29(3):479-484. [DOI:10.3969/j.issn.1003-9775.2017.03.010]
Wang X, Yang T F, Guo F X. Image analysis by circularly semi-orthogonal moments[J]. Pattern Recognition, 2016, 49:226-236.[DOI:10.1016/j.patcog.2015.08.005]
Xiao B, Ma J F, Wang X. Image analysis by Bessel-Fourier moments[J]. Pattern Recognition, 2010, 43(8):2620-2629.[DOI:10.1016/j.patcog.2010.03.013]
Coil-100 image database[EB/OL].[2016-03-01] . http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php .
Xiao B, Lu G, Zhao T, et al. Rotation, scaling and translation invariant texture recognition by Bessel-Fourier moments[J]. Pattern Recognition and Image Analysis, 2016, 26(2):302-308.[DOI:10.1134/s1054661816020024]
Yap P T, Jiang X D, Kot A C. Two-dimensional polar harmonic transforms for invariant image representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(7):1259-1270.[DOI:10.1109/TPAMI.2009.119]
Raj P A. Quaternion circularly semi-orthogonal moments for invariant image recognition[C]//Proceedings of International Conference on Computer Vision and Image Processing. Singapore: Springer, 2017.[ DOI: 10.1007/978-981-10-2107-7_46 http://dx.doi.org/10.1007/978-981-10-2107-7_46 ]
相关作者
相关机构
京公网安备11010802024621