结合改进Deeplab v3+网络的水岸线检测算法
Shoreline detection algorithm based on the improved Deeplab v3+ network
- 2019年24卷第12期 页码:2174-2182
收稿:2019-03-06,
修回:2019-7-7,
录用:2019-7-14,
纸质出版:2019-12-16
DOI: 10.11834/jig.190051
移动端阅览

浏览全部资源
扫码关注微信
收稿:2019-03-06,
修回:2019-7-7,
录用:2019-7-14,
纸质出版:2019-12-16
移动端阅览
目的
2
水岸线既是水利行业视频监控分析的基础,也是无人水面艇实现自主航行的关键。现有的许多水岸线检测的图像识别方法,不仅无法克服水面波纹、水面倒影等因素的影响,而且不具有适应性,无法同时适用于多个水岸场景分析。为此,本文采用多个复杂的水岸场景图像,训练了用于水岸分割的Deeplab v3+网络,并综合考虑分割性能和计算速度,对Deeplab v3+进行简化与改进,提出了基于改进的Deeplab v3+分割水面图像提取水岸线的检测方法。
方法
2
采集不同水岸场景图像作为训练及验证图集,并利用伽马函数扩充样本;接着修改Deeplab v3+网络,对xception结构进行微调,同时在decoder时多增加一路低级特征(low-level feature),增加特征信息;然后依据图像信息设置损失权重系数,设置可视化参数,基于改进的Deeplab v3+网络针对自己的数据集进行训练。利用训练好的PB模型在Linux操作系统调用TensorFlow的C++接口对测试图像进行区域分割。最后基于提取出的水面区域通过边缘检测算子检测水岸线,将水岸线叠加到原图。
结果
2
本文采集了不同光照强度、不同波纹程度以及不同阴影程度的水面图像进行水岸线检测实验,并与现有算法进行比较。实验结果表明本文算法可以在不同的水岸图像中检测出较为清晰完整的水岸线,准确率达93.98%,实时性达到8帧/s。
结论
2
本文算法能克服水岸边缘严重不规则、不同水岸场景差异大和复杂水岸场景中光照、波纹、倒影等因素的干扰,提升水岸图像分割准确度及效率,检测出轮廓清晰完整的水岸线,服务于水利行业的智能监控分析。
Objective
2
The shoreline is not only the basis of analysis in video surveillance in the water industry but also the key to autonomous navigation of unmanned surface boats. Many scholars have proposed shoreline detection methods. However
many existing shoreline detection algorithms utilize traditional image recognition methods for image segmentation using several features of the water surface and the ground. When dealing with different scenes
the parameters must be adjusted
but this is unsuitable for complex scenes. Traditional detection methods cannot overcome the influence of various factors
such as water surface ripple and reflection
and are unadaptable because they cannot be applied to the simultaneous analysis of multiple shoreline scenes. In this study
the Deeplab v3+ network for shoreline segmentation is trained by applying several complex shoreline scene images provided by the Chengdu River Chief's Office and self-photographed images. We simplify the Deeplab v3+ network to improve the performance and speed of segmentation. Then
on the basis of the improved Deeplab v3+
we segment the water surface image and propose a method to extract the shoreline by using the segmented image to achieve automatic shoreline extraction.
Method
2
First
images of different waterfront scenes are collected for training and verification sets. To further improve the generalization capability of the network
we use the gamma function to process 10 photos captured in different complex scenes and simulate different lighting situations in the same scene. We add 20 processed images to the verification set to expand the sample. After performing comparative experiments on various semantic segmentation networks
the Deeplab v3 + network is selected for modification
and the Xception structure is fine-tuned to reduce the number of network layers and increase the speed. Meanwhile
a low-level feature is added to the decoder to increase the feature information. Consequently
the time consumption is reduced without affecting the accuracy of the algorithm. Comparison of the modified network with the original network indicates that the modified network improves computational efficiency when the accuracy is basically unchanged. Then
according to the image information
we set the loss weight coefficient and visualization parameters to train data under the improved Deeplab v3+. Second
using the Linux operating system with the C++ interface of TensorFlow
the test image is segmented under the trained PB model. Finally
the waterfront line is detected by the edge detection operator on the basis of the extracted water surface region. The extracted water shoreline is expanded and superimposed on the original image for convenient observation.
Result
2
Waterfront detection experiments are performed on the collection of water surface images with different illumination intensities
degrees of corrugation
and shadows. Representative waterfront images are selected and compared using waterfront algorithms proposed by scholars
such as Iwahash et al.
Bao et al.
and Peng et al.. Experimental results show that only the proposed algorithm can completely process complex scenes on land and water surfaces and accurately detect clear and complete waterfront lines in different waterfront images. Furthermore
the real-time performance of the algorithm can reach 8 frame/s. Compared with the speed of other algorithms
the speed of the proposed algorithm is increased by nearly five times
and its accuracy is 93.98%
indicating an improvement of nearly 20%.
Conclusion
2
The algorithm can overcome the following situations:severely irregular waterfront edges
large difference in waterfront scenes
and interference of light
ripple
reflection
and other factors in complex waterfront scenes. In practical application
the algorithm achieves automatic shoreline extraction without artificial configuration and tuning. In addition
the accuracy and efficiency of waterfront image segmentation are improved
and a clear and complete waterfront line is detected for intelligent monitoring and analysis in the water conservancy industry. The algorithm requires a very large number of samples. However
the current sample is far from being sufficient. In the future
the number of samples in different scenarios must be increased to enhance the generalization capability of the network and the applicability of the algorithm. The application of this method in Windows and the improvement of the algorithm's practicability are other future research directions.
Bao J, Tao Q C and Zhang P. 2015. Image processing based water level detection algorithm. Water Resources and Power, 33(4):96-99, 210
鲍江, 陶青川, 张鹏. 2015.基于图像处理的水位线检测算法.水电能源科学, 33(4):96-99, 210
Chen H X. 2016. Semantic Segmentation based on Convolutional Neural Networks. Hangzhou: Zhejiang University
陈鸿翔. 2016.基于卷积神经网络的图像语义分割.杭州: 浙江大学 http://cdmd.cnki.com.cn/Article/CDMD-10335-1016063691.htm .
Duan L F, Xiong X, Liu Q, Yang W N and Huang C L. 2018. Field rice panicle segmentation based on deep full convolutional neural network. Transactions of the Chinese Society of Agricultural Engineering, 34(12):202-209
段凌凤, 熊雄, 刘谦, 杨万能, 黄成龙. 2018.基于深度全卷积神经网络的大田稻穗分割.农业工程学报, 34(12):202-209)[DOI:10.11975/j.Issn.1002-6819.2018.12.024]
Gui Y, Li L C, Wang K P and Sun X Y. 2008. A new method of sea-sky-line detection based on region variance and RANSAC algorithm. Laser&Infrared, 38(11):1149-1151
桂阳, 李立春, 王鲲鹏, 孙祥一. 2008.基于区域方差和RANSAC的海天线检测新方法.激光与红外, 38(11):1149-1151)[DOI:10.3969/j.issn.1001-5078.2008.11.022]
Huang J and Ling F R. 2005. Application of digital video server in video surveillance of the Yellow River main canal hub. China Public Security, (1):120-121
黄戟, 凌繁荣. 2005.数字视频服务器在黄河干渠枢纽视频监控中的应用.中国公共安全, (1):120-121
Iwahashi M and Udomsiri S. 2007. Water level detection from video with fir filtering//Proceedings of the 16th International Conference on Computer Communications and Networks. Honolulu, HI, USA: IEEE, 826-831[DOI: 10.1109/ICCCN.2007.4317920 http://dx.doi.org/10.1109/ICCCN.2007.4317920 ]
Jing H, Chen X Q and Gu Z W. 2006. A method for coastline extraction based on edges. Computer Simulation, 23(8):89-93, 101
荆浩, 陈学佺, 顾志伟. 2006.一种基于边缘特征的海岸线检测方法.计算机仿真, 23(8):89-93, 101)[DOI:10.3969/j.issn. 1006-9348.2006.08.026]
Liu J Y, Chen J B, Wang Z H and Li H Y. 2017. Sea-sky line detection based on superpixel classification. Metrology&Measurement Technique, 44(3):104-106, 109.
刘靖逸, 陈金波, 王志恒, 李恒宇. 2017.基于超像素分类的海天线检测方法.计量与测试技术, 44(3):104-106, 109)[DOI:10.15988/j. cnki.1004-6941.2017.03.051]
Li Y, Lan H Y and Yan H. 2015. Research on water-level recognition based on image processing and BP artificial neural network technology. Yellow River, 37(12):12-15
李翊, 兰华勇, 严华. 2015.基于图像处理和BP神经网络的水位识别研究.人民黄河, 37(12):12-15)[DOI:10.3969/j.issn.1000-1379.2015.12.004]
Long Y and Jiang W. 2008. Multi-focus image fusion based on improved spatial correlation. Optical Technique, 34(3):431-434
龙燕, 姜威. 2008.基于改进的空域相关的多聚焦图像融合.光学技术, 34(3):431-434)[DOI:10.3321/j.issn:1002-1582.2008.03.032]
Peng M Y, Wang J H, Wen X X and Cong X Y. 2018. Shoreline detection method by combining HSV spatial water image feature. Journal of Image and Graphics, 23(4):526-533
彭明阳, 王建华, 闻祥鑫, 丛晓奕. 2018.结合HSV空间的水面图像特征水岸线检测.中国图象图形学报, 23(4):526-533)[DOI:10.11834/jig.170498]
Shao C H, Cheng G M, Tang K H, Kan J W and Yang Z G. 2005. Recognition of near bank scene boundary between water surface and bank based on fractal dimension. Opto-Electronic Engineering, 32(3):78-81.
邵承会, 程光明, 唐可洪, 阚君武, 杨志刚. 2005.融合分数维特征的水岸彩色图像水岸界线识别.光电工程, 32(3):78-81)[DOI:10.3969/j.issn.1003-501X.2005.03.021]
Wang Q, Wang Z Y, Fan Y J, Teng Q Z and He X H. 2014. Image segmentation of debris particles based on edge flow and region merging. Journal of Sichuan University:Natural Science Edition, 51(1):111-118
王倩, 王正勇, 范艳军, 滕奇志, 何小海. 2014.基于边缘流和区域合并的岩屑颗粒图像分割.四川大学学报:自然科学版, 51(1):111-118)[DOI:10.3969/j.issn.0490-6756.2014.01.019]
Wang Y. 2014. Research and implementation of the water level monitoring system based on image processing. Xi'an: Xi'an University of Electronic Science and Technology
王莹. 2014.基于图像处理的水位监测系统的研究与实现.西安: 西安电子科技大学 http://d.g.wanfangdata.com.cn/Thesis_D727158.aspx .
Xu F Y and Wang H S. 2018. Semantic segmentation of corridor scene for mobile robot navigation. Application Research of Computers, 35(6):1863-1866, 1886
徐风尧, 王恒升. 2018.移动机器人导航中的楼道场景语义分割.计算机应用研究, 35(6):1863-1866, 1886)[DOI:10.3969/j.issn.1001-3695.2018.06.059]
Yang S, Chen L F, Shi Y and Mao Y M. 2018. Semantic segmentation of blue-green algae based on deep generative adversarial net. Journal of Computer Applications, 38(6):1554-1561
杨朔, 陈丽芳, 石瑀, 毛一鸣. 2018.基于深度生成式对抗网络的蓝藻语义分割.计算机应用, 38(6):1554-1561)[DOI:10.11772/j.issn.1001-9081.2017122872]
相关作者
相关机构
京公网安备11010802024621