光场数据压缩研究综述
Survey of light field data compression
- 2019年24卷第11期 页码:1842-1859
收稿日期:2019-02-25,
修回日期:2019-05-30,
录用日期:2019-6-7,
纸质出版日期:2019-11-16
DOI: 10.11834/jig.190035
移动端阅览
浏览全部资源
扫码关注微信
收稿日期:2019-02-25,
修回日期:2019-05-30,
录用日期:2019-6-7,
纸质出版日期:2019-11-16
移动端阅览
光场数据体量大,为存储和压缩带来巨大困难。由于光场数据格式与传统图像视频数据不同,现有图像视频编码工具难以高效压缩光场数据。因此,光场数据高效压缩研究对降低存储消耗和传输带宽具有重要意义。目前,光场压缩的研究越来越深入,提出的方法种类也越来越丰富。本文对现阶段光场压缩进行系统综述,为后续研究者提供研究基础。本文简要介绍了光场的基本理论及四类光场采集设备,分析了4类采集设备的优缺点,阐明了光场采集方式对光场数据格式的影响;介绍了国际标准组织联合图像专家组(JPEG)在光场压缩标准化方面的最新进展,对JPEG Pleno光场编码器的每个模块做了详细介绍;在广泛文献调研的基础上,将光场压缩算法分成3类:基于变换的压缩方法、基于伪视频序列的压缩方法和基于预测的压缩方法,对每类算法进行详细梳理和总结,并做了详细地对比分析。通过系统地梳理,凝练出光场压缩近期的进展和尚存在的问题,并对未来光场压缩的研究趋势进行展望。实现光场的高效压缩非常具有挑战性,虽然光场压缩研究近期迅猛发展,但是压缩性能仍有待进一步提高。
Light field imaging is an attractive technique for 3D visualization
especially in virtual and augmented reality application scenarios. This technique has also been applied to computer vision areas
such as depth estimation
3D reconstruction
and object detection. However
light field data have put great pressure on cost-effective storage and transmission owing to the large data volume. The data format of light field is also relatively different from that of conventional images or videos. This difference has resulted in the inefficient compression of light field data by current coding tools designed for traditional images or videos. Thus
light field compression methods must be developed
especially from the perspective of cost-effective storage and transmission bandwidth. With the advancement of light field compression
various light field compression methods have been proposed. This study conducts a survey of related works on light field compression to provide a research foundation for later researchers who will focus on this topic. First
this study briefly introduces the fundamentals of light field and the four types of light field-capturing devices. The advantages and drawbacks of different types of capturing devices are presented accordingly. The influence of different capturing devices on light field data format is also described. Second
this work discusses the recent advances in JPEG Pleno
which is a standard framework for representing and signaling plenoptic modalities. JPEG Pleno was started in 2015 by the Joint Photographic Experts Group Committee. The term "pleno" is an abbreviation of "plenoptic
" which is a mathematical formulation to represent the information of a beam of light passing through an arbitrary point within a scene. JPEG Pleno proposes a light field-coding framework for the light field data acquired by a plenoptic camera or a high-density array of cameras. The JPEG Pleno light field encoder consists of three parts
with each part illustrated in detail. Lastly
on the basis of extensive literature research
the proposed light field compression methods are divided into three categories according to the characteristics of the coding algorithms
namely
transform
pseudo-sequence-based
and predictive coding approaches. We analyze and discuss the coding methods in each category. As for transform coding approaches
the coding performance is not better than those of the other two methods because transform coding approaches do not contain the prediction process. Although several transform methods can achieve good performance in terms of energy compaction
the decorrelation efficiency of transform methods is not as good as that of the hybrid coding framework that consists of prediction and transformation. As for pseudo-sequence-based coding approaches
the correlation in spatial or view domain is converted into temporal domain. Temporal correlation can be removed by inter-prediction techniques with the use of a well-developed video encoder
such as HEVC (high efficiency video coding) codec. The coding performance can be further improved because the disparity information is not used in the video encoder. As for the predictive coding approaches
they can be further divided into two methods: self-similarity-based coding methods
which were proposed in the last two years
and disparity prediction-based coding approaches. Self-similarity-based coding methods directly encode light field images by applying template-matching-based coding methods. However
the coding performance of this method is insufficient compared with that of disparity prediction-based coding approaches. The latter can achieve the best coding performance compared with other coding methods. JPEG Pleno applies such method to encode light field data. The advantages and shortcomings of existing light field-coding methods are elucidated on the basis of the preceding analysis
and possible promising directions for future research are suggested. First
light field video data sets to explore light field video coding are lacking. Second
the JPEG Pleno light field coding framework should be studied
and coding methods should be developed on the basis of this framework. Lastly
a few coding tools
such as depth estimation and view synthesis
should be improved. Light field compression is a popular research topic
and related research achievements
including standardization advances on JPEG Pleno
will attract increasing attention. Efficient compression of light field data remains a great challenge. Although many compression approaches are available for light field data
the coding performance still needs to be improved.
Zhang C, Liu F, Hou G Q, et al. Light field photography and its application in computer vision[J]. Journal of Image and Graphics, 2016, 21(3):263-281.
张弛, 刘菲, 侯广琦, 等.光场成像技术及其在计算机视觉中的应用[J].中国图象图形学报, 2016, 21(3):263-281. [DOI:10.11834/jig.20160301]
Levoy M, Hanrahan P. Light field rendering[C]//Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. New York, USA: ACM, 1996: 31-42.[ DOI: 10.1145/237170.237199 http://dx.doi.org/10.1145/237170.237199 ]
Schelkens K, Alpaslan Z Y, Ebrahimi T, et al. JPEG Pleno: a standard framework for representing and signaling plenoptic modalities[C]//Proceedings of SPIE Applications of Digital Image Processing XLI. San Diego, USA: SPIE, 2018.[ DOI: 10.1117/12.2323404 http://dx.doi.org/10.1117/12.2323404 ]
Ebrahimi T, Foessel S, Pereira F, et al. JPEG Pleno:toward an efficient representation of visual reality[J]. IEEE Multimedia, 2016, 23(4):14-20.[DOI:10.1109/MMUL.2016.64]
Adelson E, Bergen J. The plenoptic function and the elements of early vision[M]//Landy M, Movshon J A. Computational Models of Visual Processing. Cambridge: MIT Press, 1991: 3-20.
Levoy M, Hanrahan P. Method and system for light field rendering: US, 6097394A1[P]. 2000-08-01.
Isaksen A, McMillan L, Gortler S J. Dynamically reparameterized light fields[C]//Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques. New York, USA: ACM, 2000: 297-306.[ DOI: 10.1145/344779.344929 http://dx.doi.org/10.1145/344779.344929 ]
Ihrke I, Stich T, Gottschlich H, et al. Fast incident light field acquisition and rendering[J]. Journal of WSCG, 2008, 16(1):25-32.
Yang J C, Everett M, Buehler C, et al. A real-time distributed light field camera[C]//Proceedings of the Eurographics Workshop on Rendering. Pisa, Italy: The Eurographics Association, 2002: 1-10.[ DOI: 10.2312/EGWR/EGWR02/077-086 http://dx.doi.org/10.2312/EGWR/EGWR02/077-086 ]
Zhang C, Chen T. A self-reconfigurable camera array[C]//Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques. Los Angeles, California, USA: ACM, 2004: #151.[ DOI: 10.1145/1186223.1186412 http://dx.doi.org/10.1145/1186223.1186412 ]
Liu Y B, Dai Q H, Xu W L. A real time interactive dynamic light field transmission system[C]//Proceedings of 2006 IEEE International Conference on Multimedia and Expo. Toronto, Canada: IEEE, 2006: 2173-2176.[ DOI: 10.1109/ICME.2006.262686 http://dx.doi.org/10.1109/ICME.2006.262686 ]
Wilburn B, Joshi N, Vaish V, et al. High performance imaging using large camera arrays[J]. ACM Transactions on Graphics, 2005, 24(3):765-776.[DOI:10.1145/1073204.1073259]
Dansereau D G, Schuster G, Ford J, et al. A wide-field-of-view monocentric light field camera[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017: 3757-3766.[ DOI: 10.1109/CVPR.2017.400 http://dx.doi.org/10.1109/CVPR.2017.400 ]
Levin A, Fergus R, Durand F, et al. Image and depth from a conventional camera with a coded aperture[J]. ACM Transactions on Graphics, 2007, 26(3):70-70.[DOI:10.1145/1276377.1276464]
Liang C K, Lin T H, Wong B Y, et al. Programmable aperture photography:multiplexed light field acquisition[J]. ACM Transactions on Graphics, 2008, 27(3):#55.[DOI:10.1145/1360612.1360654]
Marwah K, Wetzstein G, Bando Y, et al. Compressive light field photography using overcomplete dictionaries and optimized projections[J]. ACM Transactions on Graphics, 2013, 32(4):46.[DOI:10.1145/2461912.2461914]
Chen J, Chau L P. Light field compressed sensing over a disparity-aware dictionary[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(4):855-865.[DOI:10.1109/TCSVT.2015.2513485]
Ng R. Digital light field photography[D]. Stanford: Stanford University, 2006: 23-24.
Adelson E H, Wang J Y A. Single lens stereo with a plenoptic camera[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2):99-106.[DOI:10.1109/34.121783]
Georgeiv T, Zheng K C, Curless B, et al. Spatio-angular resolution tradeoffs in integral photography[C]//Proceedings of the 17th Eurographics conference on Rendering Techniques. Nicosia, Cyprus: ACM, 2006: 263-272.[ DOI: 10.2312/EGWR/EGSR06/263-272 http://dx.doi.org/10.2312/EGWR/EGSR06/263-272 ]
Perwaβ C, Wietzke L. Single lens 3D-camera with extended depth-of-field[C] //Proceedings of SPIE Human Vision and Electronic Imaging. Burlingame, California, USA: SPIE, 2012: 829108.[ DOI: 10.1117/12.909882 http://dx.doi.org/10.1117/12.909882 ]
Yu Z, Yu J Y, Lumsdaine A, et al. An analysis of color demosaicing in plenoptic cameras[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, Rhode Island, USA: IEEE, 2012: 901-908.[ DOI: 10.1109/CVPR.2012.6247764 http://dx.doi.org/10.1109/CVPR.2012.6247764 ]
Georgiev T G, Lumsdaine A. Focused plenoptic camera and rendering[J]. Journal of Electronic Imaging, 2010, 19(2):021106.[DOI:10.1117/1.3442712]
Astola P, Tabus I. Improving residual coding of WaSP light field codec[C]//Proceedings of 2018 International Conference on 3D Immersion. Brussels, Belgium: IEEE, 2018: 1-8.[ DOI: 10.1109/IC3D.2018.8657907 http://dx.doi.org/10.1109/IC3D.2018.8657907 ]
Astola P, Tabus I. WaSP: hierarchical warping, merging, and sparse prediction for light field image compression[C]//Proceedings of the 7th European Workshop on Visual Information Processing. Tampere, Finland: IEEE, 2018: 1-6.[ DOI: 10.1109/EUVIP.2018.8611756 http://dx.doi.org/10.1109/EUVIP.2018.8611756 ]
Astola P, Tabus I. Light field compression of HDCA images combining linear prediction and JPEG 2000[C]//Proceedings of the 26th European Signal Processing Conference. Rome, Italy: IEEE, 2018: 1860-1864.[ DOI: 10.23919/EUSIPCO.2018.8553482 http://dx.doi.org/10.23919/EUSIPCO.2018.8553482 ]
Helin P, Astola P, Rao B, et al. Sparse modelling and predictive coding of subaperture images for lossless plenoptic image compression[C]//Proceedings of 3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video. Hamburg, Germany: IEEE, 2016: 1-4.[ DOI: 10.1109/3DTV.2016.7548953 http://dx.doi.org/10.1109/3DTV.2016.7548953 ]
Helin P, Astola P, Rao B, et al. Minimum description length sparse modeling and region merging for lossless plenoptic image compression[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(7):1146-1161.[DOI:10.1109/JSTSP.2017.2737967]
Babacan S D, Georgiev T G. Method and apparatus for block-based compression of light field-images: US, 8155456B2[P]. 2012-04-10.
Magnor M A, Endmann A, Girod B. Progressive compression and rendering of light fields[C]//Proceedings of Vision Modeling and Visualization. Saarbrücken, Germany: [s.n.], 2000: 199-204.
Aggoun A. A 3D DCT compression algorithm for omnidirectional integral images[C]//Proceedings of 2006 IEEE International Conference on Acoustics, Speech, and Signal Processing. Toulouse, France: IEEE, 2006.[ DOI: 10.1109/ICASSP.2006.1660393 http://dx.doi.org/10.1109/ICASSP.2006.1660393 ]
Aggoun A. Compression of 3D integral images using 3D wavelet transform[J]. Journal of Display Technology, 2011, 7(11):586-592.[DOI:10.1109/JDT.2011.2159359]
Xu D, Dai Q H, Xu W L. Data compression of light field using wavelet packet[C]//Proceedings of 2004 IEEE International Conference on Multimedia and Expo. Taipei, China: IEEE, 2004: 1071-1074.[ DOI: 10.1109/ICME.2004.1394394 http://dx.doi.org/10.1109/ICME.2004.1394394 ]
Chang C L, Zhu X Q, Ramanathan P, et al. Light field compression using disparity-compensated lifting and shape adaptation[J]. IEEE Transactions on Image Processing, 2006, 15(4):793-806.[DOI:10.1109/TIP.2005.863954]
Sakamoto T, Kodama K, Hamamoto T. A novel scheme for 4-D light-field compression based on 3-D representation by multi-focus images[C]//Proceedings of 2012 IEEE International Conference on Image Processing. Orlando, USA: IEEE, 2012: 2901-2904.[ DOI: 10.1109/ICIP.2012.6467506 http://dx.doi.org/10.1109/ICIP.2012.6467506 ]
Liang C K. Predictive light field compression: US, 20160212443A1[P]. 2016-07-21.
Choudhury C, Tarun Y, Rajwade A, et al. Low bit-ratecompression of video and light-field data using coded snapshots and learned dictionaries[C]//Proceedings of 2015 IEEE International Workshop on Multimedia Signal Processing. Xiamen, China: IEEE, 2015: 1-6.[ DOI: 10.1109/MMSP.2015.7340830 http://dx.doi.org/10.1109/MMSP.2015.7340830 ]
Yin B C, Su J Z, Shi Y H, et al. A joint structural observation and sparse representation optimization method for light field camera: CN, CN108492239A[P]. 2018-09-04.
尹宝才, 宿建卓, 施云惠, 等.一种面向光场相机的结构化观测与稀疏表示的协同优化方法: 中国, CN108492239A[P]. 2018-09-04.
Su X, Rizkallah M, Maugey T, et al. Graph-based light fields representation and coding using geometry information[C]//Proceedin gs of 2017 IEEE International Conference on Image Processing. Beijing, China: IEEE, 2017: 4023-4027.[ DOI: 10.1109/ICIP.2017.8297038 http://dx.doi.org/10.1109/ICIP.2017.8297038 ]
Viola I, Maretic H P, Frossard P, et al. A graph learning approach for light field image compression[C]//Proceedings of Applications of Digital Image Processing XLI. San Diego, USA: SPIE, 2018.[ DOI: 10.1117/12.2322827 http://dx.doi.org/10.1117/12.2322827 ]
Rizkallah M, Su X, Maugey T, et al. Graph-based transforms for predictive light field compression based on super-pixels[C]//Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing. Calgary, Canada: IEEE, 2018: 1718-1722.[ DOI: 10.1109/ICASSP.2018.8462288 http://dx.doi.org/10.1109/ICASSP.2018.8462288 ]
Elias V R M, Martins W A. On the use of graph Fourier transform for light-field compression[J]. Journal of Communication and Information Systems, 2018, 33(1):92-103.[DOI:10.14209/jcis.2018.10]
Chao Y H, Cheung G, Ortega A. Pre-demosaic light field image compression using graph lifting transform[C]//Proceedings of 2017 IEEE International Conference on Image Processing. Beijing, China: IEEE, 2017: 3240-3244.[ DOI: 10.1109/ICIP.2017.8296881 http://dx.doi.org/10.1109/ICIP.2017.8296881 ]
Akeley K, Bevensee B, Pitts C, et al. Compression of light field images: US, 20160316218[P]. 2016-10-27.
Jin X, Han H X, Dai Q H. A light field image compression method: CN, CN106254719A[P]. 2018-11-30.
金欣, 韩海旭, 戴琼海.一种基于线性变换和图像插值的光场图像压缩方法: 中国, CN106254719A[P]. 2018-11-30.
Dai F, Zhang J, Ma Y K, et al. Lenselet image compression scheme based on subaperture images streaming[C]//Proceedings of 2015 IEEE International Conference on Image Processing. Québec City, Canada: IEEE, 2015: 4733-4737.[ DOI: 10.1109/ICIP.2015.7351705 http://dx.doi.org/10.1109/ICIP.2015.7351705 ]
Jiang Y. Research on light field compression[D]. Chengdu: University of Electronic Science and Technology of China, 2016.
蒋妍.光场图像压缩算法研究[D].成都: 电子科技大学, 2016.
Wang Z N, Bai Q L, Jiang Y, et al. A light field image compression method: CN, CN106375766A[P]. 2017-02-01.
王正宁, 柏祁林, 蒋妍, 等.一种光场图像压缩方法: 中国, CN106375766A[P]. 2017-02-01.
Guo Z L, Yang X X, Diao W M, et al. A light field image compression method: CN, CN201710305196.9[P]. 2017-09-05.
郭正霖, 杨昕欣, 刁为民, 等.一种光场图像的压缩方法: 中国, CN201710305196.9[P]. 2017-09-05.
Chen Z B, Zhao S Y, Yang K, et al. A light field image compression method based on hybrid scanning orders: CN, CN201611192842.7[P]. 2017-03-22.
陈志波, 赵盛洋, 杨昆, 等.基于混合扫描顺序的光场图像压缩方法: 中国, 201611192842.7[P]. 2017-03-22.
Viola I, Řeábek M, Ebrahimi T. Comparison and evaluation of light field image coding approaches[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(7):1092-1106.[DOI:10.1109/JSTSP.2017.2740167]
Vieira A, Duarte H, Perra C, et al. Data formats for high efficiency coding of Lytro-Illum light fields[C]//Proceedings of 2015 International Conference on Image Processing Theory, Tools and Applications. Orleans, France: IEEE, 2015: 494-497.[ DOI: 10.1109/IPTA.2015.7367195 http://dx.doi.org/10.1109/IPTA.2015.7367195 ]
Sun X, Shi Z R. Light field compression based on HEVC encoding and decoding[J]. Electronic Design Engineering, 2017, 25(4):133-137.
孙夏, 石志儒.基于HEVC编解码的光场图像压缩[J].电子设计工程, 2017, 25(4):133-137. [DOI:10.14022/j.cnki.dzsjgc.2017.04.034]
Liu Y Y, Zhu C, Mao M. Light field image compression based on quality aware pseudo-temporal sequence[J]. Electronics Letters, 2018, 54(8):500-501.[DOI:10.1049/el.2017.4560]
Dai F, Zhang Y D. A compression system for light field image captured by micro-lens array: CN: CN104469372A[P]. 2018-09-07.
代锋, 张勇东.用于压缩微透镜阵列采集的光场图像的方法和系统: 中国, CN104469372A[P]. 2018-09-07.
Liu D, Wang L Z, Li L, et al. Pseudo-sequence-based light field image compression[C]//Proceedings of 2016 IEEE International Conference on Multimedia & Expo Workshops. Seattle, WA, USA: IEEE, 2016: 1-4.[ DOI: 10.1109/ICMEW.2016.7574674 http://dx.doi.org/10.1109/ICMEW.2016.7574674 ]
Li L, Li Z, Li B, et al. Pseudo-sequence-based 2-D hierarchical coding structure for light-field image compression[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(7):1107-1119.[DOI:10.1109/JSTSP.2017.2725198]
Gao Y B. Research on rate distortion optimization in video coding[D]. Chengdu: University of Electronic Science and Technology of China, 2018.
高艳博.基于率失真优化的视频编码方法研究[D].成都: 电子科技大学, 2018.
Yang T W, Zhu C, Fan X J, et al. Source distortion temporal propagation model for motion compensated video coding optimization[C]//Proceedings of 2012 IEEE International Conference on Multimedia and Expo. Melbourne, Australia: IEEE, 2012: 85-90.[ DOI: 10.1109/ICME.2012.171 http://dx.doi.org/10.1109/ICME.2012.171 ]
Li S, Zhu C, Gao Y B, et al. Lagrangian multiplier adaptation for rate-distortion optimization with inter-frame dependency[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(1):117-129.[DOI:10.1109/TCSVT.2015.2450131]
Gao Y B, Zhu C, Li S, et al. Temporally dependent rate-distortion optimization for low-delay hierarchical video coding[J]. IEEE Transactions on Image Processing, 2017, 26(9):4457-4470.[DOI:10.1109/TIP.2017.2713598]
Gao Y B, Zhu C, Li S, et al. Source distortion temporal propagation analysisfor random-access hierarchical video coding optimization[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(2):546-559.[DOI:10.1109/TCSVT.2017.2787190]
Guo H W, Zhu C, Li S X, et al. Optimal bit allocation at frame level for rate control in HEVC[J]. IEEE Transactions on Broadcasting, 2019, 65(2):270-281.[DOI:10.1109/TBC.2018.2847445]
Dricot A, Jung J, Cagnazzo M, et al. Improved integral images compression based on multi-view extraction[C]//Proceedings of SPIE Applications of Digital Image Processing XXXIX. San Diego, CA, USA: SPIE, 2016.[ DOI: 10.1117/12.2238707 http://dx.doi.org/10.1117/12.2238707 ]
Dricot A, Jung J, Cagnazzo M, et al. Integral images compression scheme based on view extraction[C]//Proceedings of 2015 European Signal Processing Conference. Nice, France: IEEE, 2015: 101-105.[ DOI: 10.1109/EUSIPCO.2015.7362353 http://dx.doi.org/10.1109/EUSIPCO.2015.7362353 ]
Li Y, Sjöström M, Olsson R, et al. Efficient intra prediction scheme for light field image compression[C]//Proceedings of 2014 IEEE International Conference on Acoustics, Speech and Signal Processing. Florence, Italy: IEEE, 2014: 539-543.[ DOI: 10.1109/ICASSP.2014.6853654 http://dx.doi.org/10.1109/ICASSP.2014.6853654 ]
Conti C, Nunes P, Soares L D. HEVC-based light field image coding with bi-predicted self-similarity compensation[C]//Proceedings of 2016 IEEE International Conference on Multimedia & Expo Workshops. Seattle, WA, USA: IEEE, 2016: 1-4.[ DOI: 10.1109/ICMEW.2016.7574667 http://dx.doi.org/10.1109/ICMEW.2016.7574667 ]
Lucas L F R, Conti C, Nunes P, et al. Locally linear embedding-based prediction for 3D holoscopic image coding using HEVC[C]//Proceedings of the 22nd European Signal Processing Conference. Lisbon, Portugal: IEEE, 2014: 11-15.
Monteiro R J S, Nunes P J L, Rodrigues N M M, et al. Light field image coding using high-order intrablock prediction[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(7):1120-1131.[DOI:10.1109/JSTSP.2017.2721358]
Jin X, Han H X, Dai Q H. A light field image compression method based on macro-pixel boundary matching: CN, CN106961605A[P]. 2017-07-18.
金欣, 韩海旭, 戴琼海.一种基于宏像素边界匹配的光场图像压缩方法: 中国, CN106961605A[P]. 2017-07-18.
Jin X, Li L J, Dai Q H. Macro-pixel based inter prediction method for light field video: CN, CN107483936A[P]. 2017-12-15.
金欣, 李羚俊, 戴琼海.一种基于宏像素的光场视频帧间预测方法: 中国, CN107483936A[P]. 2017-12-15.
Jiang X R, Le Pendu M, Farrugia R A, et al. Light field compression with homography-based low-rank approximation[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(7):1132-1145.[DOI:10.1109/JSTSP.2017.2747078]
Liu D Y, Wang G J, Wu J, et al. Light field image compression method based on correlation of rendered views[J]. Laser Technology, 2019, 43(4):551-556.
刘德阳, 王广军, 吴健, 等.基于视点相关性的光场图像压缩算法[J].激光技术, 2019, 43(4):551-556. [DOI:10.7510/jgjs.issn.1001-3806.2019.04.020]
Li Y, Sjöström M, Olsson R, et al. Scalable coding of plenoptic images by using a sparse set and disparities[J]. IEEE Transactions on Image Processing, 2016, 25(1):80-91.[DOI:10.1109/TIP.2015.2498406]
Chen J, Hou J H, Chau L R. Light field compression with disparity-guided sparse coding based on structural key views[J]. IEEE Transactions on Image Processing, 2018, 27(1):314-324.[DOI:10.1109/TIP.2017.2750413]
Zhao S Y, Chen Z B. Light field image coding via linear approximation prior[C]//Proceedings of 2017 IEEE International Conference on Image Processing. Beijing, China: IEEE, 2017: 4562-4566.[ DOI: 10.1109/ICIP.2017.8297146 http://dx.doi.org/10.1109/ICIP.2017.8297146 ]
Chen Z B, Zhao S Y. A light field image compression method based on linear reconstruction: CN, 201711065302.7[P]. 2018-03-06.
陈志波, 赵盛洋.基于线性重建的光场图像压缩方法: 中国, 201711065302.7[P]. 2018-03-06.
Bakir N, Hamidouche W, Déforges O, et al. Light field image compression based on convolutional neural networks and linear approximation[C]//Proceedings of the 25th IEEE International Conference on Image Processing. Athens, Greece: IEEE, 2018: 1128-1132.[ DOI: 10.1109/ICIP.2018.8451597 http://dx.doi.org/10.1109/ICIP.2018.8451597 ]
Huang X P, An P, Shen L Q, et al. Efficient light field images compression method based on depth estimation and optimization[J]. IEEE Access, 2018, 6:48984-48993.[DOI:10.1109/ACCESS.2018.2867862]
Stanford Light Field Archives[DB/OL]. 2018-10-01[2019-02-18] http://lightfields.stanford.edu http://lightfields.stanford.edu .
Li N Y, Ye J W, Ji Y, et al. Saliency detection on light field[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(8):1605-1616.[DOI:10.1109/TPAMI.2016.2610425]
Ghasemi A, Afonso N, Vetterli M. LCAV-31: a dataset for light field object recognition[C]//Proceedings of SPIE Computational Imaging Ⅻ. San Francisco, California, USA: SPIE, 2014: 902014.[ DOI: 10.1117/12.2041097 http://dx.doi.org/10.1117/12.2041097 ]
Wanner S, Meister S, Goldluecke B. Datasets and benchmarks for densely sampled 4D light fields[C]//Proceedings of Annual Workshop on Vision, Modeling and Visualization. Lugano, Switzerland, Goslar: Eurographics Association, 2013: 225-226.[ DOI: 10.2312/PE.VMV.VMV13.225-226 http://dx.doi.org/10.2312/PE.VMV.VMV13.225-226 ]
Honauer K, Johannsen O, Kondermann D, et al. A dataset and evaluation methodology for depth estimation on 4D light fields[C]//Proceedings of the 13th Asian Conference on Computer Vision. Taipei, China: Springer, 2017: 19-34.[ DOI: 10.1007/978-3-319-54187-7_2 http://dx.doi.org/10.1007/978-3-319-54187-7_2 ]
Řeábek M, Ebrahimi T. New light field image dataset[C]//Proceedings of the 8th International Conference on Quality of Multimedia Experience. Lisbon, Portugal, IEEE, 2016: 1-2.[ DOI: 10.5281/zenodo.209499 http://dx.doi.org/10.5281/zenodo.209499 ]
Synthetic light field archive[DB/OL]. 2013-04-20[2019-02-18] http://web.media.mit.edu/gordonw/SyntheticLightFields http://web.media.mit.edu/gordonw/SyntheticLightFields .
LerbourR, Mercier B, Meneveaux D, et al. Quality-based improvement of quantization for light field compression[C]//Proceedings of the 2nd International Conference on Computer Graphics Theory and Applications. Barcelona, Spain, [s.n.] , 2007: 235-243.[ DOI: 10.5220/0002078802350243 http://dx.doi.org/10.5220/0002078802350243 ]
Graziosi D B, Alpaslan Z Y, McNeill D A, et al. Content adaptive light field compression: US, 20170142427A1[P]. 2017-05-18.
相关作者
相关机构