线结构光光条中心提取算法
Center extraction algorithm of line structured light stripe
- 2019年24卷第10期 页码:1772-1780
收稿:2018-09-28,
修回:2019-4-10,
录用:2019-4-17,
纸质出版:2019-10-16
DOI: 10.11834/jig.180609
移动端阅览

浏览全部资源
扫码关注微信
收稿:2018-09-28,
修回:2019-4-10,
录用:2019-4-17,
纸质出版:2019-10-16
移动端阅览
目的
2
线结构光视觉测量是一种利用可控光源和数字图像的主动视觉测量方法,光条中心提取是线结构光视觉测量的关键技术,直接影响到线结构光视觉测量的精度。传统灰度重心法只在图像的横向或纵向上计算光条的灰度重心,没有考虑光条的法线方向,精度较低。本文提出一种改进的光条中心提取算法,以期实现光条中心的精确提取。
方法
2
在分析线结构光的光条灰度特性基础上,基于传统的灰度重心法,提出一种改进的两步提取算法。基于图像差分法从原始图像中分离出有效的线结构光光条,采用传统灰度重心法对光条中心进行粗提取;在粗提取的光条中心点处通过自定义的方向模板确定光条的法线方向,以粗提取的光条中心点为中心,沿法线方向采用灰度重心法进行二次提取,获取线结构光光条的中心。
结果
2
本文采用CCD相机、镜头、线激光器及辅助机构搭建线结构光视觉系统,采用提出的算法对线激光器投影产生的直线型光条、非连续光条和弯曲光条的中心进行提取。通过光条中心提取实验获取的光条中心线的走向与光条的走向大致相同,符合预期的光条中心线。本文将Steger法作为评价标准,分别计算本文算法、传统灰度重心法与Steger法提取的光条中心的偏差,通过对比实验可知,本文算法提取的光条中心的偏差更小,并且程序运行时间比Steger法减少了3 s以上。
结论
2
本文研究线结构光的光条中心提取算法,对传统灰度重心法进行改进,能够实现直线型光条、非连续光条和弯曲光条等不同形状光条的亚像素级中心提取,并且在保证较少的程序运行时间的同时,能够提高传统灰度重心法的光条中心提取精度。
Objective
2
Machine vision continues to innovate with the development of computer technology. Line structured light vision is a three-dimensional vision method and an important branch of machine vision technology. Line structured light vision has been widely used in industrial fields
such as industrial manufacturing
food processing
target tracking
defect detection
and robotics because the light stripe has obvious characteristics in images and is easy to extract and the light beam is actively controlled. Line structured light vision measurement is an active method that utilizes a controllable light source and a digital image. The method also uses the spatial position information of the light source and combines with the digital image and processing method of machine vision to obtain the three-dimensional coordinate information of the object. The information is obtained by extracting the center line of the line structured light stripe. The point coordinates on the center line of the light stripe are obtained so the center extraction of line structured light stripe is the key technology of the measurement. The center extraction directly affects the measurement accuracy of the line structured light vision system. In a vision measurement system based on line structured light
the light stripe often shows a phenomenon in which the width is not uniform
the brightness is not concentrated
and the discreteness is larger due to the influence of the quality of the light source and the surface characteristics of the object. In this regard
the precision of the center extracted by conventional methods is difficult to ensure. The increasing application of line structured light vision measurement has led scholars to focus on ensuring the accuracy and rapidity of center extraction. Because of the precision of traditional gray-gravity method is lower
an improved center extraction algorithm is proposed for accurate extraction of the center of the light stripe to rapidly obtain the sub-pixel center coordinates of the light stripe.
Method
2
An improved center extraction algorithm is proposed on the basis of the analysis of the gray-scale characteristics of the line structured light stripe to achieve accurate extraction of the center of the light stripe. This method is commonly used in the center extraction algorithm of light stripe. The method scans the stripe line by line or column by column
the gray center of gravity of each line or column is calculated
and the gray-gravity coordinates is used as the coordinates of the center of the light stripe. The traditional gray-gravity method calculates the gray center of gravity only in the lateral or longitudinal direction of the image without considering the normal direction of the light stripe. This work improves the traditional gray-gravity method. The direction template is used to obtain the normal direction of the light stripe
and the variable width is used to solve the problem of uneven distribution of width of the light stripe. An improved two-step extraction algorithm is proposed to extract the center of the light stripe. First
the effective line structured light stripe is separated from the original image by image difference method
where the background image is subtracted from the original image. The center of the light stripe is roughly extracted by the traditional gray-gravity method. The normal direction at the center point of the light stripe is finally centered by custom direction template. The direction template consists of four matrices representing directions
corresponding to the four directions of the light stripe at the pixel level
including horizontal and vertical and tilted to the left by 45ånd to the right by 45°. Finally
the center of the rough extraction is taken as the center. The pixel points participating in the calculation are determined according to the width of the light stripe in the normal direction. The gray center of gravity is used for secondary extraction along the normal direction. Finally
the center of the line structured light stripe is obtained.
Result
2
A CCD camera
lens
line laser
and auxiliary mechanism are used to build a line structured light vision system. The structure of the laser and camera is that the former is perpendicular to the horizontal plane
and the latter is tilted relative to the laser. Line structured light is generated by the line laser
and the color CCD camera and the lens of fixed focus complete the collection of light stripe image. The line laser forms a straight light stripe
a discontinuous light stripe
and a curved light stripe by illuminating different objects. The proposed algorithm is used to extract the center of straight light stripe
discontinuous light stripe
and curved light stripe. Results of the center extraction are processed through MATLAB. In the center extraction experiment of the light stripe
the orientation of the acquired center line is approximately the same as that of the light stripe
which is in accordance with the expected center line of the light stripe. The proposed algorithm extracts the center of the light stripe closer to the center extracted by Steger method than that by traditional gray-gravity method. The running time of the algorithm is reduced by more than 3s than Steger method.
Conclusion
2
This paper investigates the center extraction algorithm of line structured light stripe and proposes an improved center extraction algorithm of line structure light stripe on the basis of traditional gray-gravity method. The method can realize the sub-pixel level center extraction of straight light stripe
discontinuous light stripe
and curved light stripe. While maintaining less running time of program
the proposed method exhibits higher accuracy for center extraction of light stripe than traditional gray-gravity method.
Wu J Y, Wang P J, Chen J H, et al. Method of linear structured light sub-pixel center position extracting based on gradient barycenter[J]. Journal of Image and Graphics, 2009, 14(7):1354-1360.
吴家勇, 王平江, 陈吉红, 等.基于梯度重心法的线结构光中心亚像素提取方法[J].中国图象图形学报, 2009, 14(7):1354-1360.[DOI:10.11834/jig.20090719]
Liu B, Wang P, Zeng Y, et al. Measuring method for micro-diameter based on structured-light vision technology[J]. Chinese Optics Letters, 2010, 8(7):666-669.
Gao X H, Liang B, Pan L, et al. Pose measurement of large non-cooperative target using line structured light vision[J]. Journal of Astronautics, 2012, 33(6):728-735.
高学海, 梁斌, 潘乐, 等.非合作大目标位姿测量的线结构光视觉方法[J].宇航学报, 2012, 33(6):728-735.[DOI:10.3873/j.issn.1000-1328.2012.06.007]
Wu Q H. Study on theory and application of 3D surface defect on-line detecting based on line-structured laser scanning[D]. Wuhan: Huazhong University of Science and Technology, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10487-1014024547.htm .
吴庆华.基于线结构光扫描的三维表面缺陷在线检测的理论与应用研究[D].武汉: 华中科技大学, 2013.
Kwon J H, Im S, Chang M, et al. A digital approach to dynamic jaw tracking using a target tracking system and a structured-light three-dimensional scanner[J]. Journal of Prosthodontic Research, 2019, 63(1):115-119.DOI:10.1016/j.jpor.2018.05.001]
Mao X R, Yuan X, Zhao C X. Detection of indoor robot's passable areas based on a single-line structured light[J]. Applied Mechanics and Materials, 2013, 433-435:667-675.DOI:10.4028/www.scientific.net/AMM.433-435.667]
Liu T, Jia G, Wang Z Y. A calibrate method of line structured light visual measurement system based on motion[J]. Chinese Journal of Sensors and Actuators, 2011, 24(4):624-628.
刘涛, 贾刚, 王宗义.一种基于运动的线结构光视觉测量系统标定方法[J].传感技术学报, 2011, 24(4):624-628.[DOI:10.3969/j.issn.1004-1699.2011.04.029]
Xi J H, Bao H, Ren Y. Research on fast extraction algorithm of laser stripee normal center[J]. Science and Technology&Innovation, 2018, (1):41-43.
席剑辉, 包辉, 任艳.激光条纹法向中心的快速提取算法研究[J].科技与创新, 2018, (1):41-43.
Usamentiaga R, Molleda J, García D F. Fast and robust laser stripe extraction for 3D reconstruction in industrial environments[J]. Machine Vision and Applications, 2012, 23(1):179-196.DOI:10.1007/s00138-010-0288-6]
Li Y Y, Zhang Z Y, Yuan L. Survey on linear structured light stripe center extraction[J]. Laser&Optoelectronics Progress, 2013, 50(10):#100002.
李莹莹, 张志毅, 袁林.线结构光光条中心提取综述[J].激光与光电子学进展, 2013, 50(10):#100002.[DOI:10.3788/lop50.100002]
Leng H W, Xu C G, Xiao D G, et al. Three-dimensional measurement method of complex deep hole inner contour based on line structure light[J]. Transactions of Beijing Institute of Technology, 2013, 33(2):139-143.
冷惠文, 徐春广, 肖定国, 等.基于线结构光的复杂深孔内轮廓三维测量方法[J].北京理工大学学报, 2013, 33(2):139-143.[DOI:10.3969/j.issn.1001-0645.2013.02.006]
Gao S Y, Yang K Z. Research on central position extraction of laser strip based on varied-boundary Gaussian fitting[J]. Chinese Journal of Scientific Instrument, 2011, 32(5):1132-1137.
高世一, 杨凯珍.变边限高斯拟合提取激光条纹中心线方法的研究[J].仪器仪表学报, 2011, 32(5):1132-1137.[DOI:10.19650/j.cnki.cjsi.2011.05.028]
Jia W P, Wang B G. The method for fast detecting the center of multi-structured light stripes based on Hessian matrix[J]. Journal of Dalian University, 2014, 35(6):34-37.
贾卫平, 王邦国.基于Hessian矩阵的多结构光条纹中心快速提取方法[J].大连大学学报, 2014, 35(6):34-37.[DOI:10.3969/j.issn.1008-2395.2014.06.008]
Zhang X Y, Wang X Q, Bai F Z, et al. Improved gray centroid method for extracting the centre-line of light-stripe[J]. Laser&Infrared, 2016, 46(5):622-626.
张小艳, 王晓强, 白福忠, 等.基于改进灰度重心法的光带中心提取算法[J].激光与红外, 2016, 46(5):622-626.[DOI:10.3969/j.issn.1001-5078.2016.05.022]
Guo Y J, Bai F Z, Zhang T Y, et al. Ring object diameter measuring method based on radon transform and gray gravity algorithm[J]. Laser&Optoelectronics Progress, 2015, 52(8):081501.
郭延杰, 白福忠, 张铁英, 等.基于Radon变换与灰度重心法的环形目标直径测量方法[J].激光与光电子学进展, 2015, 52(8):081501.[DOI:10.3788/lop52.081501]
Guo L, Zhu M Z. Robust method of linear structured light center line extracting[J]. Electro-Optic Technology Application, 2014, 29(4):30-33.
郭玲, 朱茂之.结构光条纹中心线的鲁棒提取[J].光电技术应用, 2014, 29(4):30-33.[DOI:10.3969/j.issn.1673-1255.2014.04.010]
Wang L, Chen N N, Wu L, et al. Extraction of laser stripe sub-pixel center in high-noise background[J]. Journal of Applied Optics, 2016, 37(2):321-326.
王利, 陈念年, 巫玲, 等.高噪声背景下激光条纹亚像素中心的提取[J].应用光学, 2016, 37(2):321-326.[DOI:10.5768/JAO201637.0207004]
Steger C. Unbiased extraction of lines with parabolic and Gaussian profiles[J]. Computer Vision and Image Understanding, 2013, 117(2):97-112.DOI:10.1016/j.cviu.2012.08.007]
Xu G, Sun L N, Li X T, et al. Adaptable center detection of a laser line with a normalizationapproach using Hessian-matrix eigenvalues[J]. Journal of the Optical Society of Korea, 2014, 18(4):317-329.DOI:10.3807/JOSK.2014.18.4.317]
Wang Z H, Zhang Z W. Adaptive direction template method to extract the center of structured light[J]. Laser Journal, 2017, 38(1):60-64.
王泽浩, 张中炜.自适应方向模板线结构光条纹中心提取方法[J].激光杂志, 2017, 38(1):60-64.[DOI:10.14016/j.cnki.jgzz.2017.01.060]
Li D L, Tang Y S, Huang X C, et al. Based on the Hessian matrix of the linear structured light center line extraction method research[J]. Automobile Applied Technology, 2017, (22):37-39.
李栋梁, 唐阳山, 黄贤成, 等.基于Hessian矩阵的线结构光中心线提取方法研究[J].汽车实用技术, 2017, (22):37-39.[DOI:10.16638/j.cnki.1671-7988.2017.22.013]
相关文章
相关作者
相关机构
京公网安备11010802024621