3D打印模型版权保护技术研究进展
Research progress on copyright protection technology of 3D printing model
- 2019年24卷第7期 页码:1028-1041
收稿:2018-09-11,
修回:2019-1-1,
纸质出版:2019-07-16
DOI: 10.11834/jig.180512
移动端阅览

浏览全部资源
扫码关注微信
收稿:2018-09-11,
修回:2019-1-1,
纸质出版:2019-07-16
移动端阅览
目的
2
近年来3D打印模型的版权标注和保护引起了研究者的关注,为了全面反映3D打印模型版权保护研究的现状和最新进展,本文对国内外公开发表的主要文献进行了梳理和分析。
方法
2
首先在广泛文献调研的基础上,描述3D打印模型文件和3D打印模型攻击类型,分析3D打印和扫描过程对模型的影响。然后对3D打印模型的版权保护策略进行分类,详细阐述每类方法的基本框架和相关技术特征。最后根据相关文献,将3D打印数字水印方法与传统网格水印算法和抗3D打印—扫描攻击的性能进行比较。
结果
2
基于物理特性的3D模型版权保护技术能对3D打印后的模型嵌入有效的具有一定隐蔽性的版权标识,但在提取微结构体等信息时需要借助一些专用设备,不具有普适性。基于数字水印的方法既能抵抗传统的数字模态下的相似性变换、剪切、噪声、细分、量化、光顺等攻击,又能有效抵抗3D模型的数/模等模态转换攻击,并且高精度的3D打印机和扫描仪能有效提高水印的检测率。
结论
2
3D打印产品是设计者和生产企业的智慧和心血的结晶,包含知识产权。随着3D打印在工业领域的广泛应用,3D打印模型版权保护有着广阔的应用前景和研究价值,但目前针对3D打印模型的版权保护的检测和评估机制存在一些局限性,未来需要构建统一的3D打印模型测试库和3D打印模型水印评测体系。
Objective
2
With the rapid evolution of 3D printing and scanning technologies
products on the traditional manufacturing line can be easily and rapidly copied. Copyright issues have become an unavoidable and increasingly prominent problem in the 3D printing era. Users can rapidly and easily copy and produce 3D models through 3D printing-scanning technologies. The copyright protection problems become increasingly serious. The manner by which to protect the copyright of 3D printing models effectively obtained great attention from numerous researchers in recent years. Copyright protection methods for 3D printing models have been proposed. However
the effectiveness and detection rate of the algorithms must still be further improved. This work focuses on the main literature published worldwide for comprehensive analysis to reflect the research status and latest development of the copyright protection of 3D printing models fully.
Method
2
The 3D printing model file is represented in detail in accordance with the basic framework of copyright protection of 3D printing model on the basis of extensive literature research. The attack type of the 3D printing model is elaborated. Furthermore
the influence of 3D printing and scanning process on the model is analyzed. Then
the related technologies are classified in accordance with the technical characteristics of the copyright protection strategy of 3D printing model. The basic framework of each type of method and related technical features are described. Finally
the performance analysis of 3D printing model digital watermarking is conducted in accordance with related references. Such analysis is mainly discussed from two aspects
mainly from the performance comparison of traditional grid watermarking algorithm and that of 3D printing-scanning attack.
Result
2
The 3D product model exhibits digital and solid models. The 3D printing refers to the process of converting a digital model to a physical one. A physical model is transformed to a digital scanning model during scanning. These processes involve multiple uneven sampling and quantization and are highly complicated processes. The existing 3D model digital watermarking algorithm mainly focuses on the copyright protection of a single digital modal model and ignores the copyright protection of the product model under the physical mode. The 3D printing characteristics (i.e.
print resolution
layer thickness and smoothness
and step layering effect) and geometric distortion caused by 3D scanning are neglected. Therefore
the traditional 3D mesh model watermarking strategy cannot be directly applied to the 3D printing model. The related technology is divided into two categories
namely
physical characteristic method and digital watermark
in accordance with the technical characteristics of the 3D printing model copyright protection strategy. The copyright protection technology based on the physical characteristics can embed effective copyrighted logos for 3D printed models. However
this type of technology requires special equipment when extracting micro-structure information and exhibits no universality. Methods based on the digital watermarking can effectively resist not only the attacks of similarity transformation
cutting
noise
subdivision
quantization
and smoothing in the traditional digital domain but also the modal transition attack of the 3D model. The high-precision of 3D printers and scanners can effectively improve the detection rate of watermarks.
Conclusion
2
3D printing products are the crystallization of wisdom and hard work of manufacturers and designers and contain huge intellectual property rights. With the extensive penetration of 3D printing into the industrial field
the copyright protection of 3D printing models possesses potential application and research value. However
limitations are observed in the detection and evaluation mechanism of the copyright protection of the current 3D printing model. Therefore
further research is needed. A unified 3D printing model test library and 3D printing model watermark evaluation system should be developed.
Pan Z G, Sun S S, Li L. An overview of 3D model watermarking[J]. Journal of Computer-Aided Design&Computer Graphics, 2006, 18(8):1103-1110.
潘志庚, 孙树森, 李黎. 3维模型数字水印综述[J].计算机辅助设计与图形学学报, 2006, 18(8):1103-1110. [DOI:10.3321/j.issn:1003-9775.2006.08.004]
Wang K, Lavoue G, Denis F, et al. A comprehensive survey on three-dimensional mesh watermarking[J]. IEEE Transactions on Multimedia, 2008, 10(8):1513-1527.[DOI:10.1109/TMM.2008.2007350]
Zhang X Y, Peng W, Zhang S Y, et al. Review of watermarking techniques for 3D polygonal models[J]. Journal of Computer-Aided Design&Computer Graphics, 2003, 15(8):913-920.
张新宇, 彭维, 张三元, 等. 3D网格数字水印研究进展[J].计算机辅助设计与图形学学报, 2003, 15(8):913-920. [DOI:10.3321/j.issn:1003-9775.2003.08.001]
Wang J R, Feng J Q, Miao Y W. A robust confirmable watermarking algorithm for 3D mesh based on manifold harmonics analysis[J]. The Visual Computer, 2012, 28(11):1049-1062.[DOI:10.1007/s00371-011-0650-3]
Zhan Y Z, Li Y T, Wang X Y, et al. A blind watermarking algorithm for 3D mesh models based on vertex curvature[J]. Journal of Zhejiang University Science C:Computers&Electronics, 2014, 15(5):351-362.[DOI:10.1631/jzus.C1300306]
Qian Y, Wang X Y, Zhan Y Z. A blind watermarking scheme for three-dimensional mesh models based on statistical characteristic of vertices[J]. Journal of Computer-Aided Design&Computer Graphics, 2015, 27(9):1661-1668.
钱逸, 王新宇, 詹永照.基于顶点统计特征的三维网格模型盲水印算法[J].计算机辅助设计与图形学学报, 2015, 27(9):1661-1668. [DOI:10.3969/j.issn.1003-9775.2015.09.009]
Li L, Li H K, Yuan W Q, et al. A watermarking mechanism with high capacity for three-dimensional mesh objects using integer planning[J]. IEEE Multimedia, 2018, 25(3):49-64.[DOI:10.1109/MMUL.2018.112142343]
Li H K. Research on digital watermarking algorithm for 3D mesh model[D]. Hangzhou: Hangzhou Dianzi University, 2018.
李杭凯. 3维网格模型数字水印算法研究[D].杭州: 杭州电子科技大学, 2018.
Luo Z M. Research on algorithm and application of 3D printing[D]. Beijing: Beijing Institute of Graphic Communication, 2015.
罗中明. 3D打印算法研究及应用[D].北京: 北京印刷学院, 2015.
Niu Y F. Research on technologies of 3D printing[J]. Printing Quality&Standardization, 2014, (2):8-11.[
牛一帆. 3D打印技术探究[J].印刷质量与标准化, 2014, (2):8-11.
Tang Q. Three-dimensional laser scanning technology and enlightenment of foreign status[J]. World Nonferrous Metals, 2016, (6):21-23.
唐琴. 3维激光扫描技术国外应用研究现状及启示[J].世界有色金属, 2016, (6):21-23.
Liu H X. A study of optimization of slicing direction and slicing algorithm in 3D printing[D]. Xi'an: Xidian University, 2014.
刘红霞. 3D打印分层方向优化与分层算法研究[D].西安: 西安电子科技大学, 2014.
Liu L G, Xu W P, Wang W M, et al. Survey on geometric computing in 3D printing[J]. Chinese Journal of Computers, 2015, 38(6):1243-1267.
刘利刚, 徐文鹏, 王伟明, 等. 3D打印中的几何计算研究进展[J].计算机学报, 2015, 38(6):1243-1267.
Dou P. Monitoring method and accuracy analysis of existing railways based on laser scanning[D]. Lanzhou: Lanzhou Jiaotong University, 2014.
窦鹏.基于激光扫描的既有轨道状态监测方法与精度分析[D].兰州: 兰州交通大学, 2014.
Macq B, Alface P R, Montanola M. Applicability of watermarking for intellectual property rights protection in a 3D printing scenario[C]//Proceedings of the 20th International Conference on 3D Web Technology. Heraklion, Crete, Greece: ACM, 2015: 89-95.[ DOI: 10.1145/2775292.2775313 http://dx.doi.org/10.1145/2775292.2775313
Niess V, Wende S. Intellectual property and product liability challenges in three-dimensional printing[IP Corner][J]. IEEE Consumer Electronics Magazine, 2017, 6(4):128-163.[DOI:10.1109/MCE.2017.2714278]
Fadhel N F, Crowder R M, Wills G B. Approaches to maintaining provenance throughout the additive manufacturing process[C]//Proceedings of 2013 World Congress on Internet Security. London: IEEE, 2013: 82-87.[ DOI: 10.1109/WorldCIS.2013.6751022 http://dx.doi.org/10.1109/WorldCIS.2013.6751022 ]
Suzuki M, Silapasuphakornwong P, Uehira K, et al. Copyright protection for 3D printing by embedding information inside real fabricated objects[C]//Proceedings of the 10th International Conference on Computer Vision Theory and Applications. Berlin, Germany: VISAPP, 2015: 180-185.[ DOI: 10.5220/0005342401800185 http://dx.doi.org/10.5220/0005342401800185 ]
Silapasuphakornwong P, Suzuki M, Unno H, et al. Nondestructive readout of copyright information embedded in objects fabricated with 3D printers[C]//Proceedings of the 14th International Workshop on Digital Watermarking. Tokyo, Japan: Springer, 2015: 232-238.[ DOI: 10.1007/978-3-319-31960-5_19 http://dx.doi.org/10.1007/978-3-319-31960-5_19 ]
Suzuki M, Dechrueng P, Techavichian S, et al. Embedding information into objects fabricated with 3-D printers by forming fine cavities inside them[R]. Society for Imaging Science and Technology, Burlingame, California, United States, 2017: 6-9.[ DOI: 10.2352/ISSN.2470-1173.2017.7.MWSF-317 http://dx.doi.org/10.2352/ISSN.2470-1173.2017.7.MWSF-317 ]
Willis K D D, Wilson A D. InfraStructs:fabricating information inside physical objects for imaging in the terahertz region[J]. ACM Transactions on Graphics (TOG), 2013, 32(4):#138.[DOI:10.1145/2461912.2461936]
Uehira K, Suzuki M, Silapasuphakornwong P, et al. Copyright protection for 3D printing by embedding information inside 3D-printed objects[C]//Proceedings of the 15th International Workshop on Digital Watermarking. Beijing, China: Springer, 2016: 370-378.[ DOI: 10.1007/978-3-319-53465-7_27 http://dx.doi.org/10.1007/978-3-319-53465-7_27 ]
Suzuki M, Silapasuphakornwong P, Takashima Y, et al. Number of detectable gradations in X-ray photographs of cavities inside 3D printed objects[J]. IEICE Transactions on Information and Systems, 2017, E100-D(6):1364-1367.
Flank S, Nassar A R, Simpson T W, et al. Fast authentication of metal additive manufacturing[J]. 3D Printing and Additive Manufacturing, 2017, 4(3):143-148.[DOI:10.1089/3dp.2017.0018]
Voris J, Christen B F, Alted J, et al. Three Dimensional (3D) Printed Objects with Embedded Identification (ID) Elements: US, 9656428[P]. 2017-05-23.
Qian B L. Shading-based 3D geometry watermark editing[D]. Hangzhou: Zhejiang University, 2013.
钱博磊. 3维几何数据的水印着色方法[D].杭州: 浙江大学, 2013.
Kumar A, Goel N P, Hemani M. Methodand Apparatus for Storing and Retrieving Data Embedded into the Surface of a 3D Printed Object: US, 9400910[P]. 2016-07-26.
Yamazaki S, Kagami S, Mochimaru M. Extracting watermark from 3D prints[C]//Proceedings of the 22nd International Conference on Pattern Recognition. Stockholm, Sweden: IEEE, 2014.[ DOI: 10.1109/ICPR.2014.783 http://dx.doi.org/10.1109/ICPR.2014.783 ]
Ohbuchi R, Takahashi S, Miyazawa T, et al. Watermarking 3D polygonal meshes in the mesh spectral domain[C]//Proceedings of Graphics Interface 2001. Ottawa, Ontario, Canada: ACM, 2001.
Hou J U, Kim D G, Choi S, et al. 3D print-scan resilient watermarking using a histogram-based circular shift coding structure[C]//Proceedings of the 3rd ACM Workshop on Information Hiding and Multimedia Security. Portland, Oregon, USA: ACM, 2015.[ DOI: 10.1145/2756601.2756607 http://dx.doi.org/10.1145/2756601.2756607 ]
Cho J W, Prost R, Jung H Y. An oblivious watermarking for 3D polygonal meshes using distribution of vertex norms[J]. IEEE Transactions on Signal Processing, 2007, 55(1):142-155.[DOI:10.1109/TSP.2006.882111]
Pham G N, Lee S H, Kwon O H, et al. A watermarking method for 3D printing based on menger curvature and k-mean clustering[J]. Symmetry, 2018, 10(4):#97.[DOI:10.3390/sym10040097]
Hou J U, Kim D G, Lee H K. Blind 3D mesh watermarking for 3D printed model by analyzing layering artifact[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(11):2712-2725.[DOI:10.1109/TIFS.2017.2718482]
Wang K, LavouéG, Denis F, et al. A benchmark for 3D mesh watermarking[C]//Proceedings of 2010 Shape Modeling International Conference. Aix-en-Provence, France: IEEE, 2010: 231-235.[ DOI: 10.1109/SMI.2010.33 http://dx.doi.org/10.1109/SMI.2010.33 ]
相关作者
相关机构
京公网安备11010802024621