基于熵加权
K -means全局信息聚类的高光谱图像分类Hyperspectral image classification algorithm based on entropy weighted
K -means with global information- 2019年24卷第4期 页码:630-638
收稿:2018-08-27,
修回:2018-10-7,
纸质出版:2019-04-16
DOI: 10.11834/jig.180502
移动端阅览

浏览全部资源
扫码关注微信
收稿:2018-08-27,
修回:2018-10-7,
纸质出版:2019-04-16
移动端阅览
目的
2
高光谱图像波段数目巨大,导致在解译及分类过程中出现“维数灾难”的现象。针对该问题,在
K
-means聚类算法基础上,考虑各个波段对不同聚类的重要程度,同时顾及类间信息,提出一种基于熵加权
K
-means全局信息聚类的高光谱图像分类算法。
方法
2
首先,引入波段权重,用来刻画各个波段对不同聚类的重要程度,并定义熵信息测度表达该权重。其次,为避免局部最优聚类,引入类间距离测度实现全局最优聚类。最后,将上述两类测度引入
K
-means聚类目标函数,通过最小化目标函数得到最优分类结果。
结果
2
为了验证提出的高光谱图像分类方法的有效性,对Salinas高光谱图像和Pavia University高光谱图像标准图中的地物类别根据其光谱反射率差异程度进行合并,将合并后的标准图作为新的标准分类图。分别采用本文算法和传统
K
-means算法对Salinas高光谱图像和Pavia University高光谱图像进行实验,并定性、定量地评价和分析了实验结果。对于图像中合并后的地物类别,光谱反射率差异程度大,从视觉上看,本文算法较传统
K
-means算法有更好的分类结果;从分类精度看,本文算法的总精度分别为92.20%和82.96%,
K
-means算法的总精度分别为83.39%和67.06%,较
K
-means算法增长8.81%和15.9%。
结论
2
提出一种基于熵加权
K
-means全局信息聚类的高光谱图像分类算法,实验结果表明,本文算法对高光谱图像中具有不同光谱反射率差异程度的各类地物目标均能取得很好的分类结果。
Objective
2
Hyperspectral remote sensing has become a promising research field and is applied to various aspects. Thus
hyperspectral image classification has become the key part of hyperspectral image processing. The important trait of hyperspectral images is the excessive number of bands
which results in the phenomenon of "the curse of the dimension" in their interpretation and classification. Utilizing this band information fully in the classification of hyperspectral images is difficult.
K
-means algorithm is the most classical clustering algorithm
which is widely used for image classification. The general idea of
K
-means algorithm is to treat every feature as equally important. However
when the
K
-means algorithm is used for the classification of hyperspectral images
every band is regarded as a feature
which leads to the difficulty in feature utilization and poor classification results. To solve this problem
the idea of feature weighting is introduced. Therefore
this study proposes a hyperspectral image classification algorithm based on entropy weighted
K
-means by considering global information.
Method
2
The proposed hyperspectral image classification method is based on the
K
-means clustering algorithm and considers them to indicate the importance of every band to different clusters and the inter-cluster information. Feature weighting is used to distinguish the importance of every band to different clusters
as described by the band weight. In statistics
entropy represents the degree of uncertainty of information. Thus
entropy information measurement is defined to express the weight distribution. In hyperspectral image classification
the distance between classes greatly influences the clustering results. The distance measurement of inter-cluster information is introduced to realize the global optimal clustering to avoid the local optimal clustering and obtain more accurate results. These two types of measurements are introduced into the
K
-means clustering objective function
and the optimal classification results are obtained by minimizing the objective function.
Result
2
Classification experiments are conducted using the proposed algorithm and
K
-means algorithm on Salinas and Pavia University hyperspectral images
respectively
to verify the proposed hyperspectral image classification method effectively. The ground objects in the standard images of Salinas and Pavia University are merged on the basis of the difference in the degree of spectral reflectance
and the combined standard images are considered the standard classification information. The classification results demonstrate that the proposed algorithm can effectively obtain better results than
K
-means algorithm. The overall accuracy and Kappa coefficient are calculated from a confusion matrix and compared with
K
-means algorithm to evaluate the proposed algorithm quantitatively. The overall accuracy of the algorithm is 92.20% and 82.96%
indicating 8.81% and 15.9% improvement compared with the
K
-means algorithm. The accuracy values demonstrate that the proposed algorithm can achieve more precise classification results than
K
-means algorithm.
Conclusion
2
This study proposes a hyperspectral image classification method that connects the traditional
K
-means algorithm with the idea of feature weighting and the inter-cluster information. Experimental results show that this approach is promising and effective and can achieve excellent classification results for all types of ground objects in hyperspectral images with large spectral reflectance differences. In future research
the similarity between features and the spatial information must be improved.
Bioucas-Dias J M, Plaza A, Camps-Valls G, et al. Hyperspectral remote sensing data analysis and future challenges[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(2):6-36.[DOI:10.1109/MGRS.2013.2244672]
Yu J W, Cheng Z Q, Zhang J S, et al. An Approach to Distinguishing Between Species of Trees and Crops Based on Hyperspectral Information[J]. Spectroscopy and Spectral Analysis. 2018, 38(12):3890-3896.
虞佳维, 程志庆, 张劲松, 等.高光谱信息的农林植被种类区分[J].光谱学与光谱分析, 2018, 38(12):3890-3896. [DOI:10.3964/j.jssn.1000-0593(2018)12-3890-07]
Zhang H, Zhao X M, Guo X, et al. Research progress on application of rice growth monitoring based on canopy hyperspectral information[J]. Jiangsu Agricultural Sciences, 2018, 46(12):1-9.
张晗, 赵小敏, 郭熙, 等.基于冠层高光谱信息的水稻生长监测应用研究进展[J].江苏农业科学, 2018, 46(12):1-9. [DOI:10.15889/j.issn.1002-1302.2018.12.001]
Zhang Q. Abnormal detection and recognition of ship oil spill targets in hyperspectral images[D]. Dalian: Dalian Maritime University, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10151-1018078414.htm .
张强.高光谱影像船舶溢油目标异常检测与识别[D].大连: 大连海事大学, 2018.
Du P J, Xia J S, Xue Z H, et al. Review of hyperspectral remote sensing image classification[J]. Journal of Remote Sensing, 2016, 20(2):236-256.
杜培军, 夏俊士, 薛朝辉, 等.高光谱遥感影像分类研究进展[J].遥感学报, 2016, 20(2):236-256. [DOI:10.11834/jrs.20165022]
Li J, Bioucas-Dias J M, Plaza A. Supervised hyperspectral image segmentation using active learning[C]//Proceedings of the 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing. Reykjavik, Iceland: IEEE, 2010: 1-4.[ DOI: 10.1109/WHISPERS.2010.5594844 http://dx.doi.org/10.1109/WHISPERS.2010.5594844 ]
Bao R, Xue Z H, Zhang X Y, et al. Classification merged with clustering and context for hyperspectral imagery[J]. Geographics and Information Science of Wuhan University, 2017, 42(7):890-896.
鲍蕊, 薛朝辉, 张像源, 等.综合聚类和上下文特征的高光谱影像分类[J].武汉大学学报:信息科学版, 2017, 42(7):890-896. [DOI:10.13203/j.whugis 20150043]
Ran Q, Yu H Y, Gao L R, et al. Superpixel and subspace projection-based support vector machines for hyperspectral image classification[J]. Journal of Image and Graphics, 2018, 23(1):95-105.
冉琼, 于浩洋, 高连如, 等.结合超像元和子空间投影支持向量机的高光谱图像分类[J].中国图象图形学报, 2018, 23(1):95-105. [DOI:10.11834/jig.170201]
Yang K M, Liu F, Sun Y Y, et al. Classification algorithm of hyperspectral imagery by harmonic analysis and spectral angle mapping[J]. Journal of Image and Graphics, 2015, 20(6):836-844.
杨可明, 刘飞, 孙阳阳, 等.谐波分析光谱角制图高光谱影像分类[J].中国图象图形学报, 2015, 20(6):836-844. [DOI:10.11834/jig.20150614]
Shabna A, Ganesan R. HSEG and PCA for hyper-spectral image classification[C]//Proceedings of 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies. Kanyakumari, India: IEEE, 2014: 42-47.[ DOI: 10.1109/ICCICCT.2014.6992927 http://dx.doi.org/10.1109/ICCICCT.2014.6992927 ]
Cao J N, Guan Z Q, Li D R. Study on the approaches for segmentation of hyper-spectral images based on DMN[J]. Journal of Remote Sensing, 2005, 9(5):596-603.
曹建农, 关泽群, 李德仁.基于DMN的高光谱图像分割方法研究[J].遥感学报, 2005, 9(5):596-603. [DOI:10.11834/jrs.20050587]
Selim S Z, Ismail M A. K-means-type algorithms:a generalized convergence theorem and characterization of local optimality[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, PAMI-6(1):81-87.[DOI:10.1109/TPAMI.1984.4767478]
Modha D S, Spangler W S. Feature weighting in K -means clustering[J]. Machine Learning, 2003, 52(3):217-237.[DOI:10.1023/A:1024016609528]
Chan E Y, Ching W K, Ng M K, et al. An optimization algorithm for clustering using weighted dissimilarity measures[J]. Pattern Recognition, 2004, 37(5):943-952.[DOI:10.1016/j.patcog.2003.11.003]
Huang J Z, Ng M K, Rong H Q, et al. Automated variable weighting in k-means type clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5):657-668.[DOI:10.1109/TPAMI.2005.95]
Huang J Z, Xu J, Ng M, et al. Weighting method for feature selection in K -means[M]//Liu H, Motoda H. Computational Methods of Feature Selection. Boca Raton, FL: CRC Press, 2008: 193-209.
Jing L P, Ng M K, Huang J Z. An entropy weighting K -means algorithm for subspace clustering of high-dimensional sparse data[J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(8):1026-1041.[DOI:10.1109/TKDE.2007.1048]
Dairbekov N S, Paternain G P. Entropy production in thermostats Ⅱ[J]. Journal of Statistical Physics, 2007, 127(5):887-914.[DOI:10.1007/s10955-007-9301-5]
Feng D, Feng S T. The World of Entropy[M]. Beijing:Science Press, 2005:27-239.
冯端, 冯少彤.溯源探幽:熵的世界[M].北京:科学出版社, 2005:27-239.
相关作者
相关机构
京公网安备11010802024621