采用自适应梯度稀疏模型的图像去模糊算法
Image deblurring using an adaptive sparse gradient model
- 2019年24卷第2期 页码:180-191
收稿:2018-06-20,
修回:2018-8-20,
纸质出版:2019-02-16
DOI: 10.11834/jig.180380
移动端阅览

浏览全部资源
扫码关注微信
收稿:2018-06-20,
修回:2018-8-20,
纸质出版:2019-02-16
移动端阅览
目的
2
图像的梯度分布被广泛应用在自然图像去模糊中,但研究结果显示先前的梯度参数估计方法不能很好地适应图像局部纹理变化。为此根据图像分块平稳的特点提出一种采用局部自适应梯度稀疏模型的图像去模糊模型。
方法
2
该模型采用广义高斯分布(GGD)来描述图像不同区域的梯度分布,在最大后验概率框架下建立自适应梯度稀疏模型,然后采用变量分裂交替优化算法来求解模型中的最小化问题。在GGD参数估计中,先对模糊图像进行预处理,并将预处理后的图像分成纹理区和平滑区,仅对纹理区采用全局收敛算法进行GGD参数估计,而对平滑区设置固定参数值。
结果
2
本文算法与近年来常用的去模糊去噪算法在不同类型的自然图像上进行了对比。实验结果表明,本文的参数估计法能精确地表达图像局部纹理变化,当在低噪声(加1%噪声),分别加入模糊核1和2的条件下,经本文算法去除模糊和噪声后的图像相较对比算法能分别提高信噪比值0.04~2.96 dB和0.14~3.19 dB;在高噪声(加4%噪声)不同模糊核下,能分别提高0.19~4.50 dB和0.20~3.63 dB,同时本文算法相比2017年Pan等人提出的算法(加2%噪声)能提升0.15~0.36 dB。此外,本文算法在主观视觉上能获得更清晰的纹理和边缘结构信息。
结论
2
本文算法在主客观评价上都表现出了良好的去模糊性能,可应用在自然图像和低照明图像等的去模糊领域。
Objective
2
Natural images generally consist of smooth regions with sharp edges
which lead to a heavy-tailed gradient distribution. The gradient priors of these images are commonly used for image deblurring. However
previous results show that existing parameter estimation methods cannot tightly fit the texture change of different image patches. This study presents an image deblurring algorithm that uses a local adaptive sparse gradient model that is based on a blocky stationary distribution characteristic of a natural image.
Method
2
First
our method uses a generalized Gaussian distribution (GGD) to represent the image's heavy-tailed gradient statistics. Second
an adaptive sparse gradient model is established to estimate a clean image via the maximization of posterior probability. In the model
different patches have different gradient statistics distribution
even within a single image
rather than assigning a single image gradient prior to an entire image. Third
an alternating minimization algorithm based on a variable-splitting technique is employed to solve the optimization problem of the deblurring model. This optimization problem is divided into two sub-problems
namely
latent image
$$\boldsymbol{u}$$
and auxiliaryvariable
$$\boldsymbol{\omega }$$
estimations. An alternating minimization strategy is adopted to solve the two sub-problems. Given a fixed
$$\boldsymbol{\omega }$$
$$\boldsymbol{u}$$
can be obtained by solving the first sub-problem
and given a fixed
$$\boldsymbol{u}$$
$$\boldsymbol{\omega }$$
can be acquired by solving the second sub-problem. A generalized shrinkage threshold algorithm is used to solve the second sub-problem. In addition
we initially deconvolve blurred image
$$\boldsymbol{g}$$
using standard Tikhonov regularization in the shape parameter estimation of a GGD to obtain an initial approximation image
$$\boldsymbol{u}_0$$
. Next
an edge-preserving smoothing filter is applied to obtain a new estimate image
$$\boldsymbol{u}_1$$
. Then
we divide the new estimate image
$$\boldsymbol{u}_1$$
into two regions
namely
textured and smooth regions. A globally convergent method is deployed to estimate the shape parameters of the GGD of the textured region
and a fixed parameter value is imposed to the smooth region.
Result
2
We evaluate the proposed method on different types of natural image. We also compare our method with state-of-the-art deblurring and denoising approaches. Experimental results demonstrate that the proposed parameter estimation method can accurately adapt to the local gradient statistics of an image patch. Moreover
our method exhibits good convergence and only requires 2
3 iterations. In comparison with other competing methods
we observe that textured regions are best restored by utilizing a content-aware image prior
which illustrates the benefit of the proposed method. We also compare our results with those reconstructed via other competing methods using signal-to-noise ratio (SNR) as quality metrics. We observe that our method can achieve a high SNR. Our method can achieve 0.04~2.96 dB and 0.14~3.19 dB SNR gains when the noise level is low (1%) compared with competing methods under blur kernel1 and kernel2
respectively. Our method can achieve 0.19~4.50 dB and 0.20~3.63 dB SNR gains when the noise level is high (4%) under blur kernel1 and kernel2
respectively. In addition
at a low noise level (2%)
the proposed method can achieve 0.15~0.36 dB and 0.33~0.89 dB SNR gains compared with Pan's (2017) and Cho's (2012) methods
respectively.
Conclusion
2
In comparison with state-of-the-art deblurring approaches
the proposed method not only efficient and effectively removes blurs and noise but also preserves salient edge structures and textured regions. Our method can be used for the deblurring of natural and low-illumination images and can be extended to image capture and video surveillance systems.
Gong D, Yang J, Liu L Q, et al. From motion blur to motion flow: a deep learning solution for removing heterogeneous motion blur[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017: 3806-3815.[ DOI:10.1109/cvpr.2017.405 http://dx.doi.org/10.1109/cvpr.2017.405 ]
Tschumperle D, Deriche R. Vector-valued image regularization with PDEs:a common framework for different applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(4):506-517.[DOI:10.1109/TPAMI.2005.87]
Babacan S D, Molina R, Katsaggelos A K. Parameter estimation in TV image restoration using variational distribution approximation[J]. IEEE Transactions on Image Processing, 2008, 17(3):326-339.[DOI:10.1109/tip.2007.916051]
Serra J G, Mateos J, Molina R, et al. Spike and slab variational inference for blind image deconvolution[C]//Proceedings of 2017 IEEE International Conference on Image Processing. Beijing, China: IEEE, 2017: 3765-3769.[ DOI:10.1109/icip.2017.8296986 http://dx.doi.org/10.1109/icip.2017.8296986 ]
Schuler C J, Hirsch M, Harmeling S, et al. Learning to deblur[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(7):1439-1451.[DOI:10.1109/tpami.2015.2481418]
Sun J, Cao W F, Xu Z B, et al. Learning a convolutional neural network for non-uniform motion blur removal[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015: 769-777.[ DOI:10.1109/cvpr.2015.7298677 http://dx.doi.org/10.1109/cvpr.2015.7298677 ]
Tan H P, Zeng X J, Niu S J, et al. Remote sensing image multi-scale deblurring based on regularizatio n constraint[J]. Journal of Image and Graphics, 2015, 20(3):0386-0394.
谭海鹏, 曾炫杰, 牛四杰, 等.基于正则化约束的遥感图像多尺度去模糊[J].中国图象图形学报, 2015, 20(3):0386-0394. [DOI:10.11834/jig.20150310]
Cheng H H, Bao Z P. Strong edge-oriented blind deblurring algorithm[J]. Journal of Image and Graphics, 2017, 22(8):1034-1044.
陈华华, 鲍宗袍.强边缘导向的盲去模糊算法[J].中国图象图形学报, 2017, 22(8):1034-1044. [DOI:10.11834/jig.170020]
Xu H Y, Sun Q S, Li D Y, et al. Projection-based image restoration via sparse representation and nonlocal regularization[J]. Acta Electronica Sinica, 2014, 42(7):1299-1304.
徐焕宇, 孙权森, 李大禹, 等.基于投影的稀疏表示与非局部正则化图像复原方法[J].电子学报, 2014, 42(7):1299-1304. [DOI:10.3969/j.issn.0372-2112.2014. 07.009.]
Pan J S, Sun D Q, Pfister H, et al. Blind image deblurring using dark channel prior[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016: 1628-1636.[ DOI:10.1109/cvpr.2016.180 http://dx.doi.org/10.1109/cvpr.2016.180 ]
Ren W, Cao X C, Pan J S, et al. Image deblurring via enhanced low-rank prior[J]. IEEE Transactions on Image Processing, 2016, 25(7):3426-3437.[DOI:10.1109/tip.2016.2571062]
Pan J S, Hu Z, Sun Z X, et al. $${l_0}$$ -regularized intensity and gradient prior for deblurring text images and beyond[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(2):342-355.[DOI:10.1109/TPAMI.2016. 2551244]
Krishnan D, Fergus R. Fast image deconvolution using hyper-laplacian priors[C]//Proceedings of the 22nd International Conference on Neural Information Processing Systems. Vancouver, Columbia, Canada: Curran Associates Inc., 2009: 1033-1041.
Liu W H, Mei L, Cai X, et al. Regularized image restoration algorithm on sparse gradient prior model[J]. Journal of Image and Graphics, 2012, 17(12):1485-1491.
刘伟豪, 梅林, 蔡烜, 等.稀疏梯度先验模型的正则化图像复原[J].中国图象图形学报, 2012, 17(12):1485-1491. [DOI:10.11834/jig.20121204]
Xu L, Zheng S C, Jia J Y. Unnatural $${l_0}$$ sparse representation for natural image deblurring[C]//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA: IEEE, 2013: 1107-1114.[ DOI:10.1109/cvpr. 2013.147 http://dx.doi.org/10.1109/cvpr.2013.147 ].
Zuo W M, Meng D Y, Zhang L, et al. A generalized iterated shrinkage algorithm for non-convex sparse coding[C]//Proceedings of 2013 IEEE International Conference on Computer Vision. Sydney, Australia: IEEE, 2013: 217-224.[ DOI:10.1109/iccv.2013.34 http://dx.doi.org/10.1109/iccv.2013.34 ]
Cho T S, Joshi N, Zitnick C L, et al. A content-aware image prior[C]//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010: 169-176.[ DOI:10.1109/cvpr.2010.5540214 http://dx.doi.org/10.1109/cvpr.2010.5540214 ]
Cho T S, Zitnick C L, Joshi N, et al. Image restoration by matching gradient distributions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4):683-694.[DOI:10.1109/tpami.2011.166]
Song K S. A globally convergent and consistent method for estimating the shape parameter of a generalized Gaussian distribution[J]. IEEE Transactions on Information Theory, 2006, 52(2):510-527.[DOI:10.1109/tit.2005.860423]
Wang Y L, Yang J F, Yin W T. A new alternating minimization algorithm for total variation image reconstruction[J]. SIAM Journal on Imaging Sciences, 2008, 1(3):248-272.[DOI:10.1137/080724265]
Geman D, Yang C D. Nonlinear image recovery with half-quadratic regularization[J]. IEEE Transactions on Image Processing, 1995, 4(7):932-946.[DOI:10.1109/83.392335]
Yu S, Zhang A, Li H. A review of estimating the shape parameter of generalized Gaussian distribution[J]. Journal of Computational Information Systems, 2012, 8(21):9055-9064.
Krupiński R, Purczyński J. Approximated fast estimator for the shape parameter of generalized Gaussian distribution[J]. Signal Processing, 2006, 86(2):205-211.[DOI:10.1016/j.sigpro.2005.05. 003]
Wang T Y, Li Z M. A fast parameter estimation of generalized Gaussian distribution[J]. Chinese Journal of Engineering Geophysics, 2006, 3(3):172-176.
汪太月, 李志明.一种广义高斯分布的参数快速估计法[J].工程地球物理学报, 2006, 3(3):172-176. [DOI:10.3969/j.issn.1672-7940.2006.03.003]
Fortunato H, Oliveira M M. Fast high-quality non-blind deconvolution using sparse adaptive priors[J]. The Visual Computer, 2014, 30(6):661-671.[DOI:10.1007/s00371-014-0966-x]
相关作者
相关机构
京公网安备11010802024621