带两个参数的三角多项式曲线曲面构造
Constructing trigonometric polynomial curves and surfaces with two parameters
- 2018年23卷第12期 页码:1910-1924
收稿:2018-05-21,
修回:2018-7-17,
纸质出版:2018-12-16
DOI: 10.11834/jig.180328
移动端阅览

浏览全部资源
扫码关注微信
收稿:2018-05-21,
修回:2018-7-17,
纸质出版:2018-12-16
移动端阅览
目的
2
为了使扩展的曲线曲面保留传统Bézier方法以及B样条方法良好性质的同时,具备保形性、形状可调性、高阶连续性以及广泛的应用性,本文在拟扩展切比雪夫空间利用开花的性质构造了一组最优规范全正基,并利用该基进行曲线曲面构造。
方法
2
首先构造一组最优规范全正基,并给出该基生成的拟三次TC-Bézier曲线的割角算法;接着利用最优规范全正基的线性组合构造拟三次均匀TC-B样条基,根据曲线的性质假设拟三次均匀B样条基函数具有规范性和
$${{\rm{C}}^2}$$
连续性,进而得到其表达式;然后证明拟三次均匀TC-B样条基具有全正性和高阶连续性;最后定义拟三次均匀TC-B样条曲线曲面,并证明曲线曲面的性质,给出曲线表示整圆和旋转曲面的表示方法,设计出球面和旋转曲面的直接生成方法。
结果
2
实验表明,本文在拟扩展切比雪夫空间构造的具有全正性曲线曲面,不仅能够灵活地进行形状调整,而且具有高阶连续性、保形性。
结论
2
本文在三角函数空间利用两个形状参数进行曲线曲面构造,大量的分析以及案例说明本文构造的曲线曲面不仅保留了传统的Bézier方法以及B样条方法的良好性质,而且具备保形性、形状可调性、高阶连续性以及广泛的应用性,适合用于曲线曲面设计。
Objective
2
The Bézier and B-spline curves play an important role in traditional geometric design. With the development of the geometric industry over the recent years
the traditional Bézier and B-spline curves cannot meet people's needs due to defects. At the same time
many rational forms of Bézier curves are proposed
which solve the problems faced by traditional methods. However
rational methods have not only progressive problems
but also employ the improper use of weight factors
which can be destructived to the curve and surface design. In view of the abovementioned problems
a large number of Bernstein-like and B-spline-like basis functions with shape parameters are proposed. These methods are mainly constructed in trigonometric
hyperbolic and exponential function spaces
a combination of said spaces
and polynomial space. Although many improved methods are available
these methods are rarely applied in solving practical problems. In the final analysis
these methods increase the flexibility of the curve by adding shape parameters
compared with the traditional Bézier and B-spline
methods. However
the method itself does not have the ability to replace the traditional method. Several aspects still need improvement. For example
the majority of these methods only discuss basic properties
such as non-negativity
partition of unity
symmetry
and linear independence. Shape preservation
total positivity
and variation diminishing are often overlooked
which are important properties for curve design. However
the basis function
which has total positivity
will ensure that the related curve contains variation diminishing and shape preservation. Therefore
possessing total positivity is highly important for basis function. In addition
constructing cubic curves and surfaces remains the main method among the improved methods. In general
these improved methods have
$${{\rm{C}}^2}$$
continuity
which largely meets engineering requirements. However
in many practical applications
$${{\rm{C}}^2}$$
continuity cannot meet current needs. In summary
this study aims enable the extended curve and surface to maintain the good nature of traditional Bézier and B-spline methods
while maintaining shape preservation and adjustability
high-order continuity
and wide applicability. Thus
this article makes use of the blossom property in Quasi Extended Chebyshev space to construct a group of optimal normalized totally positive basis for curve and surface construction.
Method
2
In this paper
we first construct a set of optimal normalized totally positive basis and then present a corner cutting algorithm of the cubic TC-Bézier curves generated by the base. Second
it renders use of the linear combination of optimal normalized totally positive basis construct the proposed cubic uniform TC-B spline basis. It assumes that the proposed cubic uniform B-spline basis function is characterized by normalization and continuity according to the nature of the curve
then further obtains its formula. The article proves that the proposed cubic uniform TC-B spline basis features total positivity and high-order continuity. Finally
the curve and surface of the proposed cubic uniform TC-B spline are defined
which proves the nature of the curve and surface. Furthermore
an expressive method of using the curve to show the full circle and rotating surface and direct generation method of spherical and rotating surfaces are provided.
Result
2
Analysis show that the TC-Bézier basis function in the ECC space possesse totally positivity
and the cubic uniform TC-B spline basis function in relation to the TC-Bézier basis function also possesses totally positivity. Therefore
the cubic TC-Bézier and cubic uniform B-spline curves that are generated by the corresponding basis functions also have important properties
such as variation diminishing and shape preservation
which further means that the proposed method is suitable for curve design. In addition
this paper also provides a large number of application cases to further show that the method is suitable for curve design.
Conclusion
2
We use two-shape parameters in the trigonometric function space for curve design. Surface construction
numerous analyses
and cases indicate that the curves and surfaces constructed retain not only the good properties of the traditional Bézier and B-spline methods
such as affine invariance
convex hull and variation diminishing
which are crucial in curve design but also shape preservation and adjustability
high-order continuity
and wide application. In summary
this paper proposes the trigonometric polynomial curve and surface method with two shape parameters
which solves the shortcomings of the traditional improvement methods in terms of property and high-order continuity. Therefore
the proposed method is more suitable for curve design compared with the traditional improved method.
Boehm W. Rational geometric splines[J]. Computer Aided Geometric Design, 1987, 4(1-2):67-77.[DOI:10.1016/0167-8396(87)90025-2]
Farin G. Curves and Surfaces for Computer Aided Geometric Design:A Practical Guide[M]. 3rd ed. Boston:Academic Press, 1993:37-104.
Shi F Z. Computer Aided Geometry and Non-uniform Rational B-spline (Revised) CAGD&NURBS[M]. Beijing:Higher Education Press, 2013.
施法中.计算机辅助几何设计与非均匀有理B样条(修订版)CAGD&NURBS[M].北京:高等教育出版社, 2013.
Yu D S, Xu Y B, Zeng J X. A class of quasi-quartic trigonometric polynomial Bézier curves with double parameters and its extension[J]. Computer Engineering and Applications, 2013, 49(18):180-186.
喻德生, 徐迎博, 曾接贤.一类双参数类四次三角Bézier曲线及其扩展[J].计算机工程与应用, 2013, 49(18):180-186. [DOI:10.3778/j.issn.1002-8331.1112-0347]
Han X L, Zhu Y P. Curve construction based on five trigonometric blending functions[J]. BIT Numerical Mathematics, 2012, 52(4):953-979.[DOI:10.1007/s10543-012-0386-0]
Han X L. A class of trigonometric polynomial curves on four-point piecewise scheme[J]. Journal of Image and Graphics, 2002, 7A(10):1063-1066.
韩旭里.基于四点分段的一类三角多项式曲线[J].中国图象图形学报, 2002, 7A(10):1063-1066. [DOI:10.11834/jig.2002010324]
Han X A, Ma Y C, Huang X L. The cubic trigonometric Bézier curve with two shape parameters[J]. Applied Mathematics Letters, 2009, 22(2):226-231.[DOI:10.1016/j.aml.2008.03.015]
Yin C J, Tan J Q. Trigonometric polynomial uniform B-spline curves and surfaces with multiple shape parameters[J]. Journal of Computer-Aided Design&Computer Graphics, 2011, 23(7):1131-1138.
尹池江, 檀结庆.带多形状参数的三角多项式均匀B样条曲线曲面[J].计算机辅助设计与图形学学报, 2011, 23(7):1131-1138.
Yan L L. Trigonometric curves and surfaces with shape parameter[J]. Journal of East China Institute of Technology, 2012, 35(2):197-200.
严兰兰.带形状参数的三角曲线曲面[J].东华理工大学学报:自然科学版, 2012, 35(2):197-200. [DOI:10.3969/j.issn.1674-3504.2012.02.018]
Xie J, Tan J Q. Quadratic hyperbolic polynomial curves with multiple shape parameters[J]. Journal of Image and Graphics, 2009, 14(6):1206-1211.
谢进, 檀结庆.多形状参数的二次双曲多项式曲线[J].中国图象图形学报, 2009, 14(6):1206-1211. [DOI:10.11834/jig.20090631]
Wu H Y, Zuo H. Quadratic non-uniform hyperbolic B-spline curves with multiple shape parameters[J]. Journal of Computer-Aided Design&Computer Graphics, 2007, 19(7):876-883.
邬弘毅, 左华.多形状参数的二次非均匀双曲B-样条曲线[J].计算机辅助设计与图形学学报, 2007, 19(7):876-883.[DOI:10.3321/j.issn:1003-9775.2007.07.011]
Zhu Y P, Han X L. New trigonometric basis possessing exponential shape parameters[J]. Journal of Computational Mathematics, 2015, 33(6):642-684.[DOI:10.4208/jcm.1509-m4414]
Zhu Y P, Han X L, Liu S J. Curve construction based on four $$\alpha $$ $$\beta $$ -Bernstein-like basis functions[J ] . Journal of Computational and Applied Mathematics, 2015, 273:160-181.[DOI:10.1016/j.cam.2014.06.014 ] .
Chen Q Y, Wang G Z. A class of Bézier-like curves[J]. Computer Aided Geometric Design, 2003, 20(1):29-39.[DOI:10.1016/S0167-8396(03)00003-7]
Xu G, Wang G Z. AHT Bézier curves and NUAHT B-spline curves[J]. Journal of Computer Science and Technology, 2007, 22(4):597-607.[DOI:10.1007/s11390-007-9073-z]
Su B Y, Tan J Q. A family of quasi-cubic blended splines and applications[J]. Journal of Zhejiang University Science A, 2006, 7(9):1550-1560.[DOI:10.1631/jzus.2006.A1550]
Yan L L, Liang J F. A class of algebraic-trigonometric blended splines[J]. Journal of Computational and Applied Mathematics, 2011, 235(6):1713-1729.[DOI:10.1016/j.cam.2010.09.016]
Zhu Y P, Han X L. Curves and surfaces construction based on new basis with exponential functions[J]. Acta Applicandae Mathematicae,2014, 129(1):183-203.[DOI:10.1007/s10440-013-9835-2]
Carnicer J M, Peña J M. Shape preserving representations and optimality of the Bernstein basis[J]. Advances in Computational Mathematics, 1993, 1(2):173-196.[DOI:10.1007/BF02071384]
Carnicer J M, Peña J M. Totally positive bases for shape preserving curve design and optimality of B-splines[J]. Computer Aided Geometric Design, 1994, 11(6):633-654.[DOI:10.1016/0167-8396(94)90056-6]
Kvasov B I. Methods of Shape-Preserving Spline Approximation[M]. London:World Scientific Publishing, 2000.[DOI:10.1142/4172]
Mazure M L. Which spaces for design?[J]. Numerische Mathematik, 2008, 110(3):357-392.[DOI:10.1007/s00211-008-0164-8]
Mazure M L. Quasi-Chebyshev splines with connection matrices:application to variable degree polynomial splines[J]. Computer Aided Geometric Design, 2001, 18(3):287-298.
Mazure M L. On dimension elevation in Quasi Extended Chebyshev spaces[J]. Numerische Mathematik, 2008, 109(3):459-475.[DOI:10.1007/s00211-007-0133-7]
Mazure ML. On a general new class of quasi Chebyshevian splines[J]. Numerical Algorithms, 2011, 58(3):399-438.[DOI:10.1007/s11075-011-9461-x]
Mazure M L. Quasi Extended Chebyshev spaces and weight functions[J]. Numerische Mathematik, 2011, 118(1):79-108.[DOI:10.1007/s00211-010-0312-9]
Bosner T, Rogina M. Variable degree polynomial splines are Chebyshev splines[J]. Advances in Computational Mathematics, 2013, 38(2):383-400.[DOI:10.1007/s10444-011-9242-z]
Ibraheem F, Hussain M, Hussian M Z, et al. Positive data visualization using trigonometric function[J]. Journal of Applied Mathematics, 2012, 2012(18):#247120.[DOI:10.1155/2012/247120]
Hussain M, Saleem S. $${{\rm{C}}^1}$$ rational quadratic trigonometric spline[J ] . Egyptian Informatics Journal, 2013, 14(3):211-220.[DOI:10.1016/j.eij.2013.09.002 ]
Hussain M Z, Hussain M, Waseem A. Shape-preserving trigonometric functions[J]. Computational and Applied Mathematics, 2014, 33(2):411-431.[DOI:10.1007/s40314-013-0071-1]
Ibraheem F, Hussain M, Hussain M Z. Monotone data visualization using rational trigonometric spline interpolation[J]. The Scientific World Journal, 2014, 2014:#602453.[DOI:10.1155/2014/602453]
Shi L H, Zhang G C. New extension of cubic TC-Bézier curves[J]. Computer Engineering and Applications, 2011, 47(4) 201-204
Wang G X, Zhou Z M, Zhu S M, et al. Ordinary Differential Equation[M]. 2nd ed. Beijing:Higher Education Press, 1983.
王高雄, 周之铭, 朱思铭, 等.常微分方程[M]. 2版.北京:高等教育出版社, 1983.
Zhu Y P. Research on theory and methods for geometric modeling based on basis functions possessing shape parameters[D]. Changsha: Central South University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10533-1014403350.htm .
朱远鹏.基函数中带形状参数的几何造型理论与方法研究[D].长沙: 中南大学, 2014.
Mazure M L. Blossoming:a geometrical approach[J]. Constructive Approximation, 1999, 15(1):33-68.[DOI:10.1007/s003659900096]
Mazure M L. Blossoming stories[J]. Numerical Algorithms, 2005, 39(1-3):257-288.[DOI:10.1007/s11075-004-3642-9]
Mazure M L. On a new criterion to decide whether a spline space can be used for design[J]. BIT Numerical Mathematics, 2012, 52(4):1009-1034.[DOI:10.1007/s10543-012-0390-4]
相关文章
相关作者
相关机构
京公网安备11010802024621