结合纹理梯度抑制与
梯度最小化的纹理滤波${L_0}$ Texture filtering by using texture gradient suppression and
gradient minimization${L_0}$ - 2018年23卷第11期 页码:1666-1675
收稿:2018-05-07,
修回:2018-6-20,
纸质出版:2018-10-30
DOI: 10.11834/jig.180280
移动端阅览

浏览全部资源
扫码关注微信
收稿:2018-05-07,
修回:2018-6-20,
纸质出版:2018-10-30
移动端阅览
目的
2
纹理滤波是计算机视觉领域的一个基础应用工具,其目标是抑制图像中不必要的纹理细节和保持图像的主要结构。目前已有的纹理滤波方法多存在强梯度纹理无法被抑制或结构丢失的问题,为此提出一种结合纹理梯度抑制与
$${L_0}$$
梯度最小化的纹理滤波算法。
方法
2
首先,提出一种能够区分结构/纹理像素的方向性区间梯度算子,其中采取了局部对比度拉伸和尺度自适应策略,提升了弱梯度结构像素的识别能力。随后,利用区间梯度幅值对原始图像梯度进行抑制,并用抑制后的图像梯度进行图像重建,获得纹理像素梯度小于结构像素梯度的纹理抑制图像。最后,考虑到纹理梯度抑制时会对结构像素的梯度产生一定的衰减作用,本文采用具有梯度提升作用的
$${L_0}$$
梯度最小化方法对纹理抑制图像进行滤波,得到纹理抑制结构保持的纹理滤波图像。
结果
2
通过测试马赛克和自然风景等不同类型的图片,并与
$${L_0}$$
梯度最小化、滚动引导图像滤波、相对总变分、共现滤波等方法相比较,本文算法能够在抑制强梯度纹理的情况下对图像的主要结构得以保持,并且具有良好的普适性和鲁棒性。同时本文将纹理滤波应用于图像的边缘检测和细节增强,取得了不错的效果提升。
结论
2
本文算法在兼顾强梯度纹理的抑制和结构的保持方面已超越已有的方法,对于图像的目标识别、图像融合、边缘检测等易受强梯度纹理干扰的技术领域,具有较大的应用潜力。
Objective
2
Texture is a repetitive pattern with high pixel values. Many natural images and works of art include textures such as cross-stitch and mosaic. In many cases
the visual system of individuals ignores the texture pattern and focuses on the main structure of an image. Texture filtering is a basic tool in the computer graphics and image processing fields; the goal of which is to suppress unnecessary texture details and maintain the salient structure in the image. In recent years
various texture filtering methods
which are mainly divided into global-and local-based filtering methods
have been proposed. Most of the existing texture filtering methods handle the small gradient texture images. However
handling the strong gradient texture and losing part of the structure is difficult. To solve this problem
we propose a texture filtering method by using texture gradient suppression and
$${L_0}$$
gradient minimization to suppress texture and maintain the structure.
Method
2
The main idea of this algorithm is to obtain an input image with strong gradient texture suppression and then attain the smooth filtering results through the traditional texture filtering method
which uses
$${L_0}$$
gradient minimization. Our method involves three steps to achieve the goal of image filtering. First
we improve the interval gradient operator
which has the capability to distinguish texture and structure pixels. We propose a directional interval gradient operator to increase the gradient amplitude by finding the main direction of the structure. We use a local contrast stretching strategy when calculating the direction interval gradient to improve the recognition capability of the weak gradient structure because the pixel gradient value of the weak structure area becomes smaller than the gradient value of the strong gradient texture. The directional interval gradient affects the texture suppression; thus
selecting a computational scale is particularly important. A scale adaptive strategy
which automatically selects the optimal scale for calculating interval gradient
is proposed. Second
we aim to obtain an input image with texture gradient suppression. In the first step
we obtain the directional interval gradient value
where the structured pixel is larger than the texture pixel. Then
a normalized directional interval gradient amplitude is used as the basis for attenuating the gradient of the original image. Image reconstruction is performed after image gradient suppression to obtain a texture-suppressed image with a gray pixel gradient that is smaller than the structural pixel gradient. In the image reconstruction step
we transform the reconstruction problem into the function optimization problem
and the fast Fourier transform is applied to the frequency domain to solve the problem. Finally
we use the
$${L_0}$$
gradient minimization algorithm with gradient lifting effect to filter the reconstructed image to remove the texture while preserving the structure because the texture gradient suppression operation causes a certain attenuation of the gradient of the structural pixels and thus results in the loss of the structure.
Result
2
We tested different types of pictures
including mosaics
nature
and grasslands
to prove the validity of the proposed method. The experiments are run on the windows platform
and the algorithm is implemented in MATLAB. Three main parameters are set
including the scale of calculating the directional interval gradient
the gradient weight
$$\lambda $$
in the image reconstruction step
and the smooth parameter
$$\lambda $$
in the
$${L_0}$$
gradient minimization.
$$\lambda $$
controls the suppression degree of the strong gradient texture in the reconstructed image. The texture is suppressed better with the increase in
$$\lambda $$
. We compare this algorithm against other texture filtering methods
including
$${L_0}$$
gradient minimization
rolling guidance filtering
interval gradient
co-occurrence filter
and relative total variation method. All methods use the code provided by the author and debug the optimal parameters to obtain the filter result. The field of texture filtering has no reasonable objective evaluation index. Therefore
the subjective evaluation of human eyes is used to compare the effects of different methods. The experimental results can be summarized as follows. In the mosaic image with strong gradient texture information and intractable tiny structures
this algorithm surpasses the effects of other algorithms in a strong gradient texture suppression
and the small gradient structure is also maintained. Our algorithm demonstrates superior image smoothing results in filtering out various scale textures and preserving small gradient structures when processing natural images. Moreover
texture filtering is applied to an image edge detection and detail enhancement
which achieves a favorable effect.
Conclusion
2
A texture filtering algorithm that combines texture gradient suppression and
$${L_0}$$
gradient minimization is proposed as a trade-off between strong gradient texture suppression and structure preservation in current texture filtering methods. This paper main purpose is to suppress the texture gradient of the input image. Thus
the texture and structure pixels obtain different texture filtering operations. The experiments demonstrate that our algorithm can maintain the main structure of the image and achieve smooth gradients. In the field of image recognition
image fusion
and edge detection that are susceptible to strong gradient textures
texture filtering has a significant potential for application.
Tomasi C, Manduchi R. Bilateral filtering for gray and color images[C]//Proceedings of the 6th International Conference on Computer Vision. Bombay, India: IEEE, 1998: 839-846.[ DOI:10.1109/ICCV.1998.710815 http://dx.doi.org/10.1109/ICCV.1998.710815 ]
Chen J W, Paris S, Durand F. Real-time edge-aware image processing with the bilateral grid[J]. ACM Transactions on Graphics, 2007, 26(3):#103.[DOI:10.1145/1276377.1276506]
Yang Q X, Tan K H, Ahuja N. Real-time O(1) bilateral filtering[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA: IEEE, 2009: 557-564.[ DOI:10.1109/CVPR.2009.5206542 http://dx.doi.org/10.1109/CVPR.2009.5206542 ]
Su Z, Wu X B, Zeng B Y, et al. Related reductive texture decomposition via bilateral kernel regression[J]. Journal of Computer-Aided Design&Computer Graphics, 2016, 28(12):2202-2209.
苏卓, 吴学标, 曾碧怡, 等.基于双边核回归的相对约减纹理分解方法[J].计算机辅助设计与图形学学报, 2016, 28(12):2202-2209. [DOI:10.3969/j.issn.1003-9775.2016.12.021]
Zhang Q, Shen X Y, Xu L, et al. Rolling guidance filter[C]//Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland: Springer, 2014: 815-830.[ DOI:10.1007/978-3-319-10578-9_53 http://dx.doi.org/10.1007/978-3-319-10578-9_53 ]
Cho H, Lee H, Kang H, et al. Bilateral texture filtering[J]. ACM Transactions on Graphics, 2014, 33(4):#128.[DOI:10.1145/2601097.2601188]
Karacan L, Erdem E, Erdem A. Structure-preserving image smoothing via region covariances[J]. ACM Transactions on Graphics, 2013, 32(6):#176.[DOI:10.1145/2508363.2508403]
Bao L C, Song Y B, Yang Q X, et al. Tree filtering:efficient structure-preserving smoothing with a minimum spanning tree[J]. IEEE Transactions on Image Processing, 2014, 23(2):555-569.[DOI:10.1109/TIP.2013.2291328]
Paris S, Hasinoff S W, Kautz J. Local Laplacian filters:edge-aware image processing with a Laplacian pyramid[J]. ACM Transactions on Graphics, 2011, 30(4):#68.[DOI:10.1145/2010324.1964963]
Lin T H, Way D L, Shih Z C, et al. An efficient structure-aware bilateral texture filtering for image smoothing[C]//Proceedings of the 24th Pacific Conference on Computer Graphics and Applications. Okinawa, Japan: ACM, 2016: 57-66.[ DOI:10.1111/cgf.13003 http://dx.doi.org/10.1111/cgf.13003 ]
Jeon J, Lee H, Kang H, et al. Scale-aware structure-preserving texture filtering[J]. Computer Graphics Forum, 2016, 35(7):77-86.[DOI:10.1111/cgf.13005]
Jevnisek R J, Avidan S. Co-occurrence filter[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017: 3816-3824.[ DOI:10.1109/CVPR.2017.406 http://dx.doi.org/10.1109/CVPR.2017.406 ]
Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7):629-639.[DOI:10.1109/34.56205]
Li X Y, Gu Y, Hu S M, et al. Mixed-domain edge-aware image manipulation[J]. IEEE Transactions on Image Processing, 2013, 22(5):1915-1925.[DOI:10.1109/TIP.2013.2237922]
Farbman Z, Fattal R, Lischinski D, et al. Edge-preserving decompositions for multi-scale tone and detail manipulation[J]. ACM Transactions on Graphics, 2008, 27(3):#67.[DOI:10.1145/1360612.1360666]
Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D:Nonlinear Phenomena, 1992, 60(1-4):259-268.[DOI:10.1016/0167-2789(92)90242-F]
Lee H, Jeon J, Kim J, et al. Structure-texture decomposition of images with interval gradient[J]. Computer Graphics Forum, 2017, 36(6):262-274.[DOI:10.1111/cgf.12875]
Xu L, Yan Q, Xia Y, et al. Structure extraction from texture via relative total variation[J]. ACM Transactions on Graphics, 2012, 31(6):#139.[DOI:10.1145/2366145.2366158]
Xu L, Lu C W, Xu Y, et al. Image smoothing via L 0 gradient minimization[J]. ACM Transactions on Graphics, 2011, 30(6):#174.[DOI:10.1145/2024156.2024208] .
Nguyen R M H, Brown M S. Fast and effective L 0 gradient minimization by region fusion[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015: 208-216.[ DOI:10.1109/ICCV.2015.32 http://dx.doi.org/10.1109/ICCV.2015.32 ].
Xu L, Ren J S J, Yan Q, et al. Deep edge-aware filters[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning. Lille, France: ACM, 2015: 1669-1678.
Li Y J, Huang J B, Ahuja N, et al. Deep joint image filtering[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherlands: Springer, 2016: 154-169.[ DOI:10.1007/978-3-319-46493-0_10 http://dx.doi.org/10.1007/978-3-319-46493-0_10 ]
相关作者
相关机构
京公网安备11010802024621