Bézier曲线的同次扩展及其参数选择
Extension of Bézier curves of the same degree and parameter selection
- 2018年23卷第9期 页码:1411-1423
收稿:2018-01-22,
修回:2018-2-27,
纸质出版:2018-09-16
DOI: 10.11834/jig.180005
移动端阅览

浏览全部资源
扫码关注微信
收稿:2018-01-22,
修回:2018-2-27,
纸质出版:2018-09-16
移动端阅览
目的
2
本文旨在构造一种含形状参数的Bézier曲线,要求该曲线定义在代数多项式空间上,其基函数的次数与相同数量控制顶点所需Bernstein基函数的次数相同,对基函数以及相应曲线的计算要尽可能简单,并且要给出常见设计要求下曲线中形状参数的选取方案。
方法
2
以三次Bézier曲线为初始研究对象,依据由可调控制顶点定义可调曲线的思想,在两个内控制顶点中引入参数,与Bernstein基函数作线性组合生成形状可调曲线,再将曲线表达式改写成固定控制顶点与含参数的调配函数的线性组合,从而得出三次Bernstein基函数的含参数扩展基,借助递推公式得出更高次的含参数扩展基,然后观察基函数表达式的规律,给出所有含参数扩展基统一的显示表达式,分析了扩展基的性质,并由之定义含参数的曲线,分析了曲线的性质,给出了曲线的几何作图法以及光滑拼接条件,以曲线拉伸能量、弯曲能量、扭曲能量近似最小为目标,推导了曲线中形状参数的计算公式,再通过曲线图和曲率图对比分析了不同能量目标所得曲线的差异。
结果
2
由于所给含参数的扩展基并未提升Bernstein基函数的次数,且具有统一的显示表达式,因此本文方法在赋予Bézier曲线形状调整能力的同时并未增加计算量,由于提供了可以直接使用的形状参数的计算公式,因此在使用该方法时,符合设计要求的形状参数的确定变得简单,数值实例直观显示了所给曲线造型方法以及曲线中形状参数选取方案的正确性与有效性,体现了本文方法较文献中类似方法的优越之处。
结论
2
所给含参数扩展基的构造方法以及形状参数的选取方法具有一般性,该方法可以推广至构造含形状参数的三角域Bézier曲面。
Objective
2
The purpose of this paper is to construct a type of Bézier curve with a shape parameter. We require the curves defined in algebraic polynomial space. The degree of the basis functions should be the same as the Bernstein basis functions
which needed the same number of control points. The calculation of the basis functions and corresponding curves should be as simple as possible. The selection scheme under common design requirements of the shape parameter in the curves should be provided.
Method
2
With the cubic Bézier curve as the initial research object and in accordance with the idea of defining a shape-adjustable curve by using adjustable control points
we introduce a parameter into the two inner control points. Let the control points with the parameter have a linear combination with the Bernstein basis functions to generate the shape adjustable curves. By rewriting the expression of the curves as the linear combination of the fixed control points and the blending functions with the parameter
we obtain the extended basis with the parameter of the cubic Bernstein basis functions. By using the recursive formula
we obtain the extended basis with the parameter of a high degree. Then
we observe the rule of the basis function expression and provide the uniform explicit expression of all extended basis functions with parameters. The properties of the extended basis functions are analyzed
and the corresponding curves with parameters are defined. The properties of the curves are analyzed. The geometric drawing method and smooth joining conditions of the curves are also provided. The calculation formula of the parameter
which causes the stretch
strain
and jerk energies of the curves to be approximately minimum
is deduced. The difference of the curves determined by different energy targets is compared and analyzed by using the graph of the curves and their curvatures.
Result
2
The method provides the Bézier curve shape adjustability without increasing the calculation amount due to the fact that the extended basis functions have the same degree as the Bernstein basis functions and have a uniform explicit expression. Determining the shape parameter that conforms to the design requirements when using this method is easy because the calculation formula of the shape parameter can be used directly. The numerical examples intuitively show the correctness and validity of the proposed curve modeling method and the shape parameter selection scheme in the curve. The illustration also shows the superiority of the method provided in this paper over similar methods presented in the literature.
Conclusion
2
The method of constructing an extended basis with the parameter and selection method of the shape parameter are general. This method can be extended to construct a triangular Bézier surface with parameter.
Wang R H, Li C J, Zhu C G. Computational Geometry Tutorial[M]. Beijing:Science Press, 2008.
王仁宏, 李崇君, 朱春钢.计算几何教程[M].北京:科学出版社, 2008.
Wang W T, Wang G Z. Bézier curves with shape parameter[J]. Journal of Zhejiang University Science-Science A, 2005, 6(6):497-501.[DOI:10.1631/jzus.2005.A0497]
Yan L L, Song L Z. Bézier curves with two shape parameters[J]. Journal of Engineering Graphics, 2008, 29(3):88-92.
严兰兰, 宋来忠.带两个形状参数的Bézier曲线[J].工程图学学报, 2008, 29(3):88-92. [DOI:10.3969/j.issn.1003-0158.2008.03.017]
Yang L Q, Zeng X M. Bézier curves and surfaces with shape parameters[J]. International Journal of Computer Mathematics, 2009, 86(7):1253-1263.[DOI:10.1080/00207160701821715]
Hang H J, Yu J, Li W G. Two parameters extension of cubic Bézier curve and its applications[J]. Computer Engineering and Applications, 2010, 46(31):178-180, 205.
杭后俊, 余静, 李汪根.三次Bézier曲线的一种双参数扩展及应用[J].计算机工程与应用, 2010, 46(31):178-180, 205. [DOI:10.3778/j.issn.1002-8331.2010.31.049]
Yan L L, Liang J F. An extension of the Bézier model[J]. Applied Mathematics and Computation, 2011, 218(6):2863-2879.[DOI:10.1016/j.amc.2011.08.030]
Qin X Q, Hu G, Zhang N J, et al. A novel extension to the polynomial basis functions describing Bezier curves and surfaces of degree n with multiple shape parameters[J]. Applied Mathematics and Computation, 2013, 223:1-16.[DOI:10.1016/j.amc.2013.07.073]
Yan L L, Wu G G. An new extension of Bézier method[J]. Journal of Hefei University of Technology, 2013, 36(5):625-631.
严兰兰, 邬国根. Bézier方法的新扩展[J].合肥工业大学学报:自然科学版, 2013, 36(5):625-631. [DOI:10.3969/j.issn.1003-5060.2013.05.025]
Hui H Y, Zhang G C. Similar Bézier curves with two shape parameters[J]. Computer Science, 2014, 41(11A):100-102, 122.
葸海英, 张贵仓.带两个参数的拟Bézier曲线[J].计算机科学, 2014, 41(11A):100-102, 122.
Shi L H, Zhang G C. New extension of cubic TC-Bézier curves[J]. Computer Engineering and Applications, 2011, 47(4):201-204.
师利红, 张贵仓.三次TC-Bézier曲线的新扩展[J].计算机工程与应用, 2011, 47(4):201-204.][DOI:10.3778/j.issn.1002-8331.2011.04.056
Dube M, Mishra U. Tension quasi-quintic trigonometric Bézier curve with two shape parameters[J]. International Journal of Recent Scientific Research, 2016, 7(8):12866-12870.
Wu B B, Yin J F, Jin M, et al. Rational quadratic trigonometric Bézier curve based on new basis with exponential functions[J]. Journal of Shanghai Normal University:Natural Sciences, 2017, 46(3):410-416.
吴蓓蓓, 殷俊锋, 金猛, 等.基于新指数基函数的有理二次三角Bézier曲线[J].上海师范大学学报:自然科学版, 2017, 46(3):410-416. [DOI:10.3969/J.ISSN.100-5137.2017.03.009]
Chen S G, Huang Y D. Hyperbolic Bézier curves with multiple shape parameters[J]. Journal of Engineering Graphics, 2009, 30(1):75-79.
陈素根, 黄有度.带多形状参数的双曲Bézier曲线[J].工程图学学报, 2009, 30(1):75-79. [DOI:10.3969/j.issn.1003-0158.2009.01.014]
Zhang J X, Tan J Q. Extensions of hyperbolic Bézier curves[J]. Journal of Engineering Graphics, 2011, 32(1):31-38.
张锦秀, 檀结庆.代数双曲Bézier曲线的扩展[J].工程图学学报, 2011, 32(1):31-38. [DOI:10.3969/j.issn.1003-0158.2011.01.007]
Yan L L, Han X L, Zhou Q H. Quadratic hyperbolic Bézier curve and surface[J]. Computer Engineering and Science, 2015, 37(1):162-167.
严兰兰, 韩旭里, 周其华.二次双曲Bézier曲线曲面[J].计算机工程与科学, 2015, 37(1):162-167. [DOI:10.3969/j.issn.1007-130X.2015.01.025]
Xu G, Wang G Z, Chen W Y. Geometric construction of energy-minimizing Béezier curves[J]. Science China Information Sciences, 2011, 54(7):1395-1406.[DOI:10.1007/s11432-011-4294-8]
Zhang C M, Zhang P F, Cheng F H. Fairing spline curves and surfaces by minimizing energy[J]. Computer-Aided Design, 2001, 33(13):913-923.
Long X P. Fairing of curves and surfaces by local energy optimization[J]. Journal of Computer-Aided Design&Computer Graphics, 2002, 14(12):1109-1113.
龙小平.局部能量最优法与曲线曲面的光顺[J].计算机辅助设计与图形学学报, 2002, 14(12):1109-1113. [DOI:10.3321/j.issn:1003-9775.2002.12.002]
Wang Y J, Cao Y. Energy optimization fairing algorithm of non-uniform cubic parametric splines[J]. Journal of Computer-Aided Design&Computer Graphics, 2005, 17(9):1969-1975.
王远军, 曹沅.非均匀三次参数样条曲线的能量最优光顺算法[J].计算机辅助设计与图形学学报, 2005, 17(9):1969-1975. [DOI:10.3321/j.issn:1003-9775.2005.09.013]
Sun Y H. Quintic G 2 interpolating fair curves via curvature variation minmization[D]. Hangzhou: Zhejiang Gongshang University, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10353-1016031384.htm .
孙义环. 曲率变化最小的五次G 2 插值光顺曲线[D]. 杭州: 浙江工商大学, 2015.
Wallner J. Existence of set-interpolating and energy-minimizing curves[J]. Computer Aided Geometric Design, 2004, 21(9):883-892.[DOI:10.1016/j.cagd.2004.07.010]
Yong J H, Cheng F H. Geometric hermite curves with minimum strain energy[J]. Computer Aided Geometric Design, 2004, 21(3):281-301.[DOI:10.1016/j.cagd.2003.08.003]
Zhang A, Zhang C. Shape interpolating geometric hermite curves with minimum strain energy[J]. Journal of Information and Computational Science, 2006, 3(4):1025-1033.
Veltkamp R C, Wieger W. Modeling 3D curves of minimal energy[J]. Computer Graphics Forum, 2010, 14(3):97-110.[DOI:10.1111/j.1467-8659.1995.cgf143_0097.x]
Jaklič G, Žagara E. Planar cubic G 1 interpolatory splines with small strain energy[J]. Journal of Computational and Applied Mathematics, 2011, 235(8):2758-2765.[DOI:10.1016/j.cam.2010.11.025]
Ling C C, Abbas M, Ali J M. Minimum energy curve in polynomial interpolation[J]. Matematika (Johor Bahru), 2011, 27(2):159-167.
Adriaenssens S, Malek S, Miki M, et al. Generating smooth curves in 3 dimensions by minimizing higher order strain energy measures[J]. International Journal of Space Structures, 2013, 28(3-4):119-126.[DOI:10.1260/0266-3511.28.3-4.119]
Li X M, Zhang Y X, Ma L, et al. Discussion on relationship between minimal energy and curve shapes[J]. Applied Mathematics-A Journal of Chinese Universities, 2014, 29(4):379-390.[DOI:10.1007/s11766-014-3230-2]
Yan L L, Han X L. Improvement of the modifiable Bézier curves[J]. Journal of Image and Graphics, 2014, 19(9):1368-1376.
严兰兰, 韩旭里.对可调控Bézier曲线的改进[J].中国图象图形学报, 2014, 19(9):1368-1376. [DOI:10.11834/jig.20140914]
Wu X Q. Bézier curve with shape parameter[J]. Journal of Image and Graphics, 2006, 11(2):269-274.
吴晓勤.带形状参数的Bézier曲线[J].中国图象图形学报, 2006, 11(2):269-274. [DOI:10.3969/j.issn.1006-8961.2006.02.019]
相关作者
相关机构
京公网安备11010802024621