基于3维模型的数字浮雕生成技术
Survey and prospect of 3D model-based digital relief generation
- 2018年23卷第9期 页码:1273-1284
收稿:2017-12-20,
修回:2018-3-11,
纸质出版:2018-09-16
DOI: 10.11834/jig.170642
移动端阅览

浏览全部资源
扫码关注微信
收稿:2017-12-20,
修回:2018-3-11,
纸质出版:2018-09-16
移动端阅览
目的
2
浮雕是雕塑艺术的一种,根据其空间结构和用途的不同分为高浮雕、浅浮雕和凹浮雕3类。随着数字化技术和3D打印技术的发展,数字化浮雕的生成技术已经成为近年来计算机图形学领域的研究热点之一,从3维模型生成浮雕以其真实自然的效果成为浮雕生成的主要方法之一。为了使即将进入该领域的学者尽快了解该方法的现状和发展趋势,本文对3种类型的浮雕生成技术进行了系统的综述。
方法
2
介绍了3种类型的浮雕生成技术,着重比较分析了基于3维网格模型的数字浅浮雕生成过程中的关键技术,存在问题及解决方案。针对复杂3维网格模型在生成数字凹浮雕过程中存在的部分细节信息丢失、特征线类型体现形式不完善、线条与形体间的过渡尚未解决、生成浮雕效果不自然等具体问题,提出了适用于3维复杂网格模型生成数字凹浮雕的研究方案。同时,从角色动画序列出发,对最优浮雕的生成技术进行了探讨,探讨结合信息熵理论计算选择最佳动作及观察视角的场景,还原艺术家的创作过程,为适用于面向3维打印的用户浮雕产品定制服务提供了可行的解决方案。
结果
2
基于3维模型的浮雕生成方法是生成数字浮雕的一种重要方法,如何通过压缩和细节保持相关算法得到效果自然的浮雕模型一直是研究者们研究的热点问题。
结论
2
虽然由3维模型生成数字浮雕是一种行之有效的方法,但是仍存在细节信息丢失、线条过渡不自然、特征线类型不完善等几个值得继续研究的问题,另外一个值得研究的问题就是如何智能地从3维动画序列生成浮雕。
Objective
2
Relief art is a type of sculpture that can be categorized into high
bas
and sunken reliefs in accordance with space structure and application. High relief is characterized by height above 50% of the original mesh depth. Bas relief has a height below 50% of the original mesh depth. Sunken relief is always obtained by carving an object into a background plane. In modern industrial production
relief has a broad application in producing nameplates
coins
architectural decorations
and others. Currently
two main methods are available to generate digital reliefs:2D image-based and 3D mesh-based methods. Most 2D image-based methods usually generate digital relief by feature extraction and 3D reconstruction technologies. However
2D images cannot convey the depth of 3D mesh. 3D mesh-based methods always obtain digital relief by compression and detail preservation technologies. Digital relief generation based on 3D mesh is a recently emerging research topic with the development of digital technology and 3D printing. This method has become one of the hot topics to generate digital reliefs from 3D models in computer graphic fields. Therefore
this paper presents a literature review to support scholars in gaining further insights into the frontier development of the topic.
Method
2
Three types of digital relief generation techniques were systematically analyzed
and the key technologies
problems
and solutions in the process of digital bas-relief generation were examined and compared. Although digital high-relief and bas-relief generation has been widely investigated
spaces remain to be explored for the sunken relief. Currently
some drawbacks are present in generating sunken reliefs with a complex model:detailed information is missing
the line type has not achieved a good embodied form
the transition between the lines and the body was not achieved
and the generated sunken relief is not vivid and natural. This paper provides a solution for generating digital sunken reliefs from 3D complex models. To investigate the technology of optimal relief generation
this paper starts from the character animation sequence and calculates the optimal action and perspective of the scene with the information entropy theory aiming to recover the creation process of artists. The investigation work aims to provide a feasible solution for user customization and 3D printing relief production services.
Result
2
This process is one of the main methods to generate a piece of relief from 3D models. Considering high and bas reliefs
numerous researchers have studied several methods
which we categorize into two classes. One is based on human visual information and relief is generated by compressing the 3D model. Although this algorithm is simple
most relief details are lost during compression. The other class is based on several geometrical operations. This algorithm is good in preserving details but always needs to solve the Poisson equation
which requires several calculations and has low efficiency. Furthermore
this algorithm can easily generate local deformation
and sometimes
human interactions
such as adjusting parameters
are necessary to achieve the desired effect. At present
the process of how to obtain a vivid effect through compression and detail preservation has been a hot topic. Sunken relief always conveys information by lines. However
existing methods have not considered the manifestations of three types of lines
namely
main
inner
and fine shadow lines. A simple line arrangement could not show a complete sunken relief. Moreover
transition between the lines is necessary to generate a vivid and natural sunken relief. For these problems
some research is consequential
such as investigating different embodied forms of various types of lines and setting different engraving depths and locations for various types of lines for a smooth transition between the lines and the body. On the basis of relief generation
two important studies exist
that is
the selections of best attitude and perspective. In addition
the process of how to achieve an optimal relief through intelligent algorithms is worth discussing. This case will reduce the difficulty encountered by artists and sculptors in the process of carving. Selecting the best posture from an animation sequence is similar to the problem of key frame extraction. Furthermore
the best perspective can provide more important information than other perspectives. Thus
using the information entropy theory is a feasible scheme for optimal relief generation from an animation sequence. In addition
current digital relief generation methods cannot composite models considering the spatial structure and importance of characters. Combination model relief should not be generated by simply compositing several models together.
Conclusion
2
Generating a digital relief from 3D models is an effective method. However
the processes of obtaining additional details and line types
creating the transition between lines
and intelligently generating the 3D bas relief automatically from the 3D animation sequence also pose certain problems.
Rogers R L. Relief Sculpture[M]. Oxford:Oxford University Press, 1974.
Lu Q, Wang L, Meng X X, et al. The bas-relief generation method of human faces from 3D depth images and 2D intensity images[J]. Journal of Computer-Aided Design&Computer Graphics, 2015, 27(7):1172-1181.
陆巧, 王璐, 孟祥旭, 等.结合深度图像和强度图像的人脸浅浮雕生成算法[J].计算机辅助设计与图形学学报, 2015, 27(7):1172-1181. [DOI:10.3969/j.issn.1003-9775.2015.07.004]
Zeng Q, Martin R R, Wang L, et al. Region-based bas-relief generation from a single image[J]. Graphical Models, 2014, 76(3):140-151. [DOI:10.1016/j.gmod.2013.10.001]
To H T, Sohn B S. Bas-relief generation from face photograph based on facial feature enhancement[J]. Multimedia Tools and Applications, 2017, 76(8):10407-10423. [DOI:10.1007/s11042-016-3924-y]
Weyrich T, Deng J, Barnes C, et al. Digital bas-relief from 3D scenes[J]. ACM Transactions on Graphics, 2007, 26(3):#32. [DOI:10.1145/1276377.1276417]
Kerber J, Tevs A, Belyaev A, et al. Real-time Generation of Digital Bas-Reliefs[J]. Computer-Aided Design&Applications, 2010, 7(4):465-478. [DOI:10.3722/cadaps.2010.465-478]
Kerber J, Wang M, Chang J, et al. Computer assisted relief generation-a survey[J]. Computer Graphics Forum, 2012, 31(8):2363-2377. [DOI:10.1111/j.1467-8659.2012.03185.x]
Liu S L, Xu X Y, Li B, et al. An Algorithm for Generating Line-engraving Relief[J]. Journal of Chinese Computer Systems, 2011, 32(10):2088-2091.
刘胜兰, 徐小燕, 李博, 等.一种刻线浮雕生成算法[J].小型微型计算机系统, 2011, 32(10):2088-2091.
Wang M L, Kerber J, Chang J, et al. Relief stylization from 3D models using featured lines[C]//Proceedings of the 27th Spring Conference on Computer Graphics. Viničné, Slovak Republic: ACM, 2011: 37-42. [ DOI:10.1145/2461217.2461226 http://dx.doi.org/10.1145/2461217.2461226 ]
Zhang Y W, Zhou Y Q, Li X L, et al. Line-based sunken relief generation from a 3D mesh[J]. Graphical Models, 2013, 75(6):297-304. [DOI:10.1016/j.gmod.2013.07.002]
Wang M L, Chang J, Kerber J, et al. A framework for digital sunken relief generation based on 3D geometric models[J]. The Visual Computer, 2012, 28(11):1127-1137. [DOI:10.1007/s00371-011-0663-y]
Cignoni P, Montani C, Scopigno R. Computer-assisted generation of bas-and high-reliefs[J]. Journal of Graphics Tools, 1997, 2(3):15-28. [DOI:10.1080/10867651.1997.10487476]
Arpa S, Süsstrunk S, Hersch R. High Reliefs from 3D Scenes[J]. Computer Graphics Forum, 2015, 34(2):253-263. [DOI:10.1111/cgf.12557]
Wang M L, Yu S, Zhang H M, et al. Digital relief generation from 3d models[J]. Chinese Journal of Mechanical Engineering, 2016, 29(6):1128-1133. [DOI:10.3901/CJME.2016.0720.084]
Belhumeur P N, Kriegman D J, Yuille A L. The bas-relief ambiguity[J]. International Journal of Computer Vision, 1999, 35(1):33-44. [DOI:10.1023/A:1008154927611]
Song W H, Belyaev A, Seidel H P. Automatic generation of bas-reliefs from 3D shapes[C]//Proceedings of 2007 IEEE International Conference on Shape Modeling and Applications. Lyon, France: IEEE Computer Society, 2007: 211-214. [ DOI:10.1109/SMI.2007.9 http://dx.doi.org/10.1109/SMI.2007.9 ]
Lee C H, Varshney A, Jacobs D W. Mesh saliency[J]. ACM Transactions on Graphics, 2005, 24(3):659-666. [DOI:10.1145/1073204.1073244]
Kerber J, Belyaev A, Seidel H P, et al. Feature preserving depth compression of range images[C]//Proceedings of the 23rd Spring Conference on Computer Graphics. Budmerice, Slovakia: ACM, 2007: 101-105. [ DOI:10.1145/2614348.2614363 http://dx.doi.org/10.1145/2614348.2614363 ]
Kerber J, Tevs A, Belyaev A, et al. Feature sensitive bas relief generation[C]//Proceedings of 2009 IEEE International Conference on Shape Modeling and Applications. Beijing, China: IEEE, 2009: 148-154. [ DOI:10.1109/SMI.2009.5170176 http://dx.doi.org/10.1109/SMI.2009.5170176 ]
Zhao P, Bian Z. The bas-relief on curved surface from 3D meshes[J]. Journal of Computer-Aided Design&Computer Graphics, 2010, 22(7):1126-1131.
赵鹏, 边哲.曲面浅浮雕生成算法[J].计算机辅助设计与图形学学报, 2010, 22(7):1126-1131.
Bian Z, Hu S M. Preserving detailed features in digital bas-relief making[J]. Computer Aided Geometric Design, 2011, 28(4):245-256. [DOI:10.1016/j.cagd.2011.03.003]
Bian Z, Zhai Z Y. Feature recovery for bas-relief based on integral invariant[J]. China Sciencepaper, 2013, 8(1):35-40.
边哲, 翟自勇.基于积分不变量的浅浮雕特征恢复算法[J].中国科技论文, 2013, 8(1):35-40. [DOI:10.3969/j.issn.2095-2783.2013.01.009]
Li B, Liu S L, Zhang L Y, et al. Bas-relief generation algorithm based on Laplace operator decomposition of 3D model[J]. Computer Integrated Manufacturing Systems, 2011, 17(5):946-951.
李博, 刘胜兰, 张丽艳, 等.基于3维模型拉普拉斯分解的浮雕生成算法[J].计算机集成制造系统, 2011, 17(5):946-951.
Li B, Liu S Y, Zhang L Y. Bas-relief generation using manifold harmonics analysis[J]. Journal of Computer-Aided Design&Computer Graphics, 2012, 24(2):252-261.
李博, 刘胜兰, 张丽艳.基于流形调和变换的浅浮雕生成算法[J].计算机辅助设计与图形学学报, 2012, 24(2):252-261. [DOI:10.3969/j.issn.1003-9775.2012.02.019]
Sun X F, Rosin P L, Martin R R, et al. Bas-relief generation using adaptive histogram equalization[J]. IEEE Transactions on Visualization and Computer Graphics, 2009, 15(4):642-653. [DOI:10.1109/TVCG.2009.21]
Zhang Y W, Zhou Y Q, Zhao X F, et al. Real-time bas-relief generation from a 3D mesh[J]. Graphical Models, 2013, 75(1):2-9. [DOI:10.1016/j.gmod.2012.10.003]
Wang M L, Guo S H, Zhang H M, et al. Saliency-based relief generation[J]. IETE Technical Review, 2013, 30(6):454-480. [DOI:10.4103/0256-4602.125659]
Zhang Y W, Zhou Y Q, Li X L, et al. Bas-relief generation and shape editing through gradient-based mesh deformation[J]. IEEE Transactions on Visualization and Computer Graphics, 2015, 21(3):328-338. [DOI:10.1109/TVCG.2014.2377773]
Zhang Y W, Zhang C M,Wang W P, et al. Adaptive bas-relief generation from 3D object under illumination[J]. Computer Graphics Forum, 2016, 35(7):311-321. [DOI:10.1111/cgf.13028]
Schüller C, Panozzo D, Sorkine-Hornung O, et al. Appearance-mimicking surfaces[J]. ACM Transactions on Graphics, 2014, 33(6):#216. [DOI:10.1145/2661229.2661267]
Zhou S Z, Liu L G. Realtime digital bas-relief modeling[J]. Journal ofComputer-Aided Design&Computer Graphics, 2010, 22(3):434-439.
周世哲, 刘利刚.实时数字浮雕建模[J].计算机辅助设计与图形学学报, 2010, 22(3):434-439.
Liu S L, Tang Z X, Li B, et al. Relief pasting algorithm based on normal vector adjustment[J]. Journal of Computer Applications, 2011, 31(1):33-36.
刘胜兰, 汤正翔, 李博, 等.基于法矢调整的浮雕曲面粘贴算法[J].计算机应用, 2011, 31(1):33-36. [DOI:10.3724/SP.J.1087.2011.00033]
Li B, Liu S L, Zhang L Y. Detail-preserving bas-relief on surface from 3D scene[J]. Journal of Computer-Aided Design&Computer Graphics, 2012, 24(6):799-807.
李博, 刘胜兰, 张丽艳.细节保持的曲面浅浮雕算法[J].计算机辅助设计与图形学学报, 2012, 24(6):799-807. [DOI:10.3969/j.issn.1003-9775.2012.06.014]
Liu Y J, Ji Z P, Liu Z, et al. Stylized design of bas-relief based on normal field[J]. Journal of Computer-Aided Design&Computer Graphics, 2016, 28(12):2120-2127.
刘玉洁, 计忠平, 刘真, 等.基于法向域的浅浮雕风格化设计[J].计算机辅助设计与图形学学报, 2016, 28(12):2120-2127. [DOI:10.3969/j.issn.1003-9775.2016.12.011]
Ji Z P, Sun X F, Li S, et al. Real-time bas-relief generation from depth-and-normal maps on GPU[J]. Computer Graphics Forum, 2014, 33(5):75-83. [DOI:10.1111/cgf.12433]
Sohn B S. Ubiquitous creation of digital bas-reliefs using smartphone[C]//Proceedings of 2016 Eighth International Conference on Ubiquitous and Future Networks. Vienna, Austria: IEEE, 2016: 748-750. [ DOI:10.1109/ICUFN.2016.7537138 http://dx.doi.org/10.1109/ICUFN.2016.7537138 ]
Kolomenkin M, Leifman G, Shimshoni I, et al. Reconstruction of relief objects from archeological line drawings[J]. Journal on Computing&Cultural Heritage, 2013, 6(1):#3. [DOI:10.1145/2442080.2442083]
Sahillioǧlu Y, Kavan L. Detail-preserving mesh unfolding for nonrigid shape retrieval[J]. ACM Transactions on Graphics, 2016, 35(3):#27. [DOI:10.1145/2893477]
Hu J Q, He S, Lyu L. Placement optimization for generating bas-reliefs based on visual saliency[J]. Journal of Computer-Aided Design&Computer Graphics, 2016, 28(12):2128-2133.
扈婧乔, 何莎, 吕琳.考虑视觉显著性的模型浅浮雕位置优化算法[J].计算机辅助设计与图形学学报, 2016, 28(12):2128-2133. [DOI:10.3969/j.issn.1003-9775.2016.12.012]
Wolf W. Narrative and narrativity:a narratological reconceptualization and its applicability to the visual arts[J]. Word&Image, 2003, 19(3):180-197. [DOI:10.1080/02666286.2003.10406232]
Scopigno R, Cignoni P, Pietroni N, et al. Digital fabrication techniques for cultural heritage:a survey[J]. Computer Graphics Forum, 2017, 36(1):6-21. [DOI:10.1111/cgf.12781]
Hong X J, Peng S J, Liu X. Key-frame extraction of motion capture data via laplacian score based feature selection[J]. Computer Engineering&Science, 2015, 37(2):365-371.
洪小娇, 彭淑娟, 柳欣.基于拉普拉斯分值特征选择的运动捕获数据关键帧提取[J].计算机工程与科学, 2015, 37(2):365-371. [DOI:10.3969/j.issn.1007-130X.2015.02.027]
Han H L, Li J, Fei G Z. A hybrid measure of viewpoint scoring using visual perception and information entropy[J]. Journal of Computer-Aided Design&Computer Graphics, 2014, 26(6):939-947.
韩红雷, 李静, 费广正.结合视觉感知与信息量的视点评分方法[J].计算机辅助设计与图形学学报, 2014, 26(6):939-947.
Han H L, Wang W C, Hua M. Getting upright Orientation of 3D objects via viewpoint scoring[J]. Journal of Software, 2015, 26(10):2720-2732.
韩红雷, 王文成, 华淼.基于视点评分的3维模型摆正[J].软件学报, 2015, 26(10):2720-2732. [DOI:10.13328/j.cnki.jos.004742]
Lienhard S, Specht M, Neubert B, et al. Thumbnail galleries for procedural models[J]. Computer Graphics Forum, 2014, 33(2):361-370. [DOI:10.1111/cgf.12317]
Wang M L, Guo S H, Liao M H, et al. Pose selection for animated scenes and a case study of bas-relief generation[C]//Proceedings of the Computer Graphics International Conference. Yokohama, Japan: ACM, 2017: #31. [ DOI:10.1145/3095140.3095171 http://dx.doi.org/10.1145/3095140.3095171 ]
Wang M L, Guo S H, Liao M H, et al. Action snapshot with single pose and viewpoint[J]. The Visual Computer, 2018. [DOI:10.1007/s00371-018-1479-9]
相关文章
相关作者
相关机构
京公网安备11010802024621