视觉目标跟踪方法研究综述
Review of visual object tracking technology
- 2018年23卷第8期 页码:1091-1107
收稿:2017-11-28,
修回:2018-3-10,
纸质出版:2018-08-16
DOI: 10.11834/jig.170604
移动端阅览

浏览全部资源
扫码关注微信
收稿:2017-11-28,
修回:2018-3-10,
纸质出版:2018-08-16
移动端阅览
目的
2
随着军事侦察任务设备的发展,红外与可见光侦察技术成为军事装备中的主要侦察手段。研究视觉目标跟踪技术对提高任务设备的全天候目标侦察、目标跟踪、目标定位等战场情报获取能力具有重要意义。目前,对视觉目标跟踪技术的研究越来越深入,目标跟踪的方法和种类也越来越丰富。本文对目前应用较为广泛的4种视觉目标跟踪方法进行研究综述,为后续国内外研究者对目标跟踪相关理论及发展研究工作提供基础。
方法
2
通过对视觉目标跟踪技术难点问题进行分析,根据目标跟踪方法建模方式的不同,将视觉目标跟踪方法分为生成式模型方法与判别式模型方法。分别对生成式模型跟踪算法中的均值漂移目标跟踪方法和粒子滤波目标跟踪方法,判别式模型跟踪算法中的相关滤波目标跟踪方法和深度学习目标跟踪方法进行研究。首先分别对4种跟踪算法的基本原理进行介绍,然后针对4种跟踪算法基本原理的不足和对应目标跟踪中的难点问题进行分析,最后针对目标跟踪的难点问题,给出对应算法的主流改进方案。
结果
2
针对视觉目标跟踪相关技术研究进展,结合无人机侦察任务需求,对跟踪算法实际应用中存在的重点解决问题与相关目标跟踪的难点问题进行分析,给出目前的解决方案与不足,探讨研究未来无人机目标侦察跟踪技术的发展方向。
结论
2
视觉目标跟踪技术已经取得了显著的进展,在侦察任务中的应用越来越广泛。但目标跟踪技术仍然是非常具有挑战性的问题,目标跟踪中的相关理论有待进一步完善和改进,由于实际应用中的场景复杂,目标跟踪的难点问题的挑战性更大,因此容易导致跟踪效果不佳。针对不同的应用环境,结合具体不同军事装备的特点,研究相对精确和鲁棒并且满足实时性要求的视觉目标跟踪算法,对提升装备的全天候侦察目标信息获取能力具有重要意义。
Objective
2
With the development of military reconnaissance mission equipment
infrared and visible light target reconnaissance techniques have already become the main means of reconnaissance among military equipment. Research on infrared and visible light object tracking technology is important for the improvement of intelligence equipment related to battlefield acquisition and precision strike in military missions
such as all-weather target reconnaissance
object tracking
and target location. Presently
with the rise of computer vision technology
visual object tracking technology has gradually become the focus and challenge of research
and the methods and kinds of object tracking techniques are increasing. In this study
four kinds of visual object tracking methods
which are extensively used at present
are reviewed. This work serves as basis for follow-up research on the theory and development of object tracking.
Method
2
By analyzing the difficult problems of infrared and visible object tracking technology
the visual object tracking method is divided into generative and discriminative model methods
the different modeling methods of object tracking. The mean shift and particle filter object tracking in generative model algorithm and the correlation filtering and deep learning object tracking in discriminative model algorithm are reviewed in this paper. First
the basic principles of the three standard object tracking algorithms
namely
mean shift object tracking and particle filter object tracking methods and correlation filters for object tracking method
are comprehensively analyzed. Then
the limitations of the basic principles of the three tracking algorithms are listed
and the corresponding difficulties in object tracking that need to be solved are presented. By analyzing the difficult problems in object tracking
the mainstream improvement scheme of the corresponding object tracking algorithm is given. According to the characteristics of infrared image and the difficult problem of infrared object tracking
the improved algorithm of infrared correlation filter for object tracking is presented. We analyzed the methods of object tracking using deep learning and divided them into two categories. One is to take the neural network feature as the target feature extraction method. We analyzed its feature extraction principles and characteristics and feature extraction strategy in object tracking. Moreover
the corresponding improvement scheme is also provided according to the characteristics of infrared object tracking. The other one is the neural network framework. We summarized its principles and characteristics and analyzed its various architecture advantages and disadvantages in object tracking. To address the problem of infrared object tracking
an improvement scheme is proposed. Finally
we summarized the present situation and discussed the practical application and future development trend of object tracking technology.
Result
2
Presently
the visual object tracking technology has a reliable performance under short-term object tracking condition. However
in long-term tracking required in practical application is difficult because the application scene is complex
making the difficult problem of object tracking prominent. Given the key and difficult problems in object tracking
such as target occlusion and target out of view
the robustness and precision of object tracking technology are required to be high in practical application
and corresponding solutions to the problem of long-time object tracking should be put forward. In view of the progress in the research on technology related to visual object tracking
along with the demand of unmanned aerial vehicle reconnaissance mission and the high maneuverability of unmanned aerial vehicles
this study analyzes the key problems
gives the current solutions of the existing weaknesses and explores the development direction.
Conclusion
2
Thus far
the visual object tracking technology has performed remarkable progress
and its accuracy and success rate have been significantly improved. Visual object tracking technology is becoming widely used in the reconnaissance missions of military equipment. However
the technology of object tracking remains challenging. The related theories of object tracking need to be further tested and improved
especially in view of the characteristics of infrared object tracking. To improve the object tracking effect in infrared image
the corresponding object tracking method and improved scheme should be further studied. The object tracking is challenging because the application scene is complex. The robustness and accuracy of the object tracking algorithm should be high to avoid failure
and its real-time performance and tracking speed should meet real-time requirements. Considering the application characteristics and application scope of different military equipment
finding a visual object tracking algorithm is important. The algorithm must be relatively accurate and robust and meets real-time requirements to enhance the equipment's all-weather reconnaissance ability and target battlefield information acquisition capability.
Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift[C ] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island,SC, United States: IEEE, 2002: 142-149. [ DOI:10.1109/CVPR.2000.854761 http://dx.doi.org/10.1109/CVPR.2000.854761 ]
Comaniciu D, Meer P. Mean shift:a robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5):603-619.[DOI:10.1109/34.1000236]
Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5):564-575.[DOI:10.1109/TPAMI.2003.1195991]
Wang Y Z, Pan Q, Zhao C H, et al. A robust mean shift tracking method under varying illumination[J]. Journal of Electronics&Information Technology, 2007, 29(10):2287-2291.
王永忠, 潘泉, 赵春晖, 等.一种对光照变化鲁棒的均值漂移跟踪方法[J].电子与信息学报, 2007, 29(10):2287-2291. [DOI:10.3724/SP.J.1146.2006.01751]
Birchfield S T, Rangarajan S. Spatiograms versus histograms for region-based tracking[C ] //Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA: IEEE, 2005: 1158-1163. [ DOI:10.1109/CVPR.2005.330 http://dx.doi.org/10.1109/CVPR.2005.330 ]
Ning J, Zhang L, Zhang D, et al. Robust mean-shift tracking with corrected background-weighted histogram[J]. IET Computer Vision, 2012, 6(1):62-69.[DOI:10.1049/iet-cvi.2009.0075]
Jia S M, Wang S, Wang L J, et al. Human tracking based on adaptive multi-feature mean-shift algorithm[J]. Journal of Optoelectronics·Laser, 2014, 25(10):2018-2024.
贾松敏, 王爽, 王丽佳, 等.多特征自适应均值漂移算法的目标跟踪[J].光电子·激光, 2014, 25(10):2018-2024. [DOI:10.16136/j.joel.2014.10.055]
Babaeian A, Rastegar S, Bandarabadi M, et al. Mean shift-based object tracking with multiple features[C ] //Proceedings of the 41st Southeastern Symposium on System Theory. Tullahoma, TN, USA: IEEE, 2009: 68-72. [ DOI:10.1109/SSST.2009.4806829 http://dx.doi.org/10.1109/SSST.2009.4806829 ]
Yang W, Li J S, Shi D Q, et al. Mean shift-based object tracking in FLIR imagery using multiple features[C ] //Proceedings of SPIE Volume 7496 Pattern Recognition and Computer Vision. Yichang, China: SPIE, 2009, 7496: #74960T. [ DOI:10.1117/12.832386 http://dx.doi.org/10.1117/12.832386 ]
Collins R T, Liu Y X, Leordeanu M. Online selection of discriminative tracking features[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10):1631-1643.[DOI:10.1109/TPAMI.2005.205]
Dai Y M, Wei W, Lin Y N. An improved mean-shift tracking algorithm based on color and texture feature[J]. Journal of Zhejiang University:Engineering Science, 2012, 46(2):212-217.
戴渊明, 韦巍, 林亦宁.基于颜色纹理特征的均值漂移目标跟踪算法[J].浙江大学学报:工学版, 2012, 46(2):212-217. [DOI:10.3785/j.issn.1008-973X.2012.02.005]
Liu Q, Tang L B, Zhao B J, et al. Infrared target tracking based on adaptive multiple features fusion and mean shift[J]. Journal of Electronics&Information Technology, 2012, 34(5):1137-1141.
刘晴, 唐林波, 赵保军, 等.基于自适应多特征融合的均值迁移红外目标跟踪[J].电子与信息学报, 2012, 34(5):1137-1141. [DOI:10.3724/SP.J.1146.2011.01077]
Zhang Q, Cao Q, Wang X W, et al. Novel IR target tracking method based on the grey prediction and HOGI feature[J]. Journal of Xidian University, 2010, 37(4):751-757.
张齐, 曹琦, 王晓薇, 等.融合灰色预测和HOGI特征的红外目标跟踪方法[J].西安电子科技大学学报:自然科学版, 2010, 37(4):751-757. [DOI:10.3969/j.issn.1001-2400.2010.04.030]
Liu X M, Wang S C, Zhao J, et al. Infrared target tracking algorithm based on adaptive bandwidth of mean shift[J]. Control and Decision, 2012, 27(1):114-119.
刘兴淼, 王仕成, 赵静, 等.基于自适应核窗宽的红外目标跟踪算法[J].控制与决策, 2012, 27(1):114-119. [DOI:10.13195/j.cd.2012.01.117.liuxm.013]
Li J C, Liu X M, Xue F L, et al. Infrared target tracking with adaptive bandwidth mean shift[C]//Proceedings of the 32nd Chinese Control Conference. Xi'an, China: IEEE, 2013: 4656-4660.
Vojir T, Noskova J, Matas J. Robust scale-adaptive mean-shift for tracking[C ] //Kämäräinen J K, Koskela M. Image Analysis. Berlin, Heidelberg: Springer, 2013: 652-663. [ DOI:10.1007/978-3-642-38886-6_61 http://dx.doi.org/10.1007/978-3-642-38886-6_61 ]
Wang N, Ding Y B, Tang J, et al. Bandwidth-adaptive mean-shift target tracking algorithm[J]. Journal of South China University of Technology:Natural Science Edition, 2011, 39(10):44-49.
王年, 丁业兵, 唐俊, 等.带宽自适应的Mean Shift目标跟踪算法[J].华南理工大学学报:自然科学版, 2011, 39(10):44-49. [DOI:10.3969/j.issn.1000-565X.2011.10.008]
Dong W H, Chang F L, Li T P, et al. Adaptive fragments-based target tracking method fusing color histogram and SIFT features[J]. Journal of Electronics&Information Technology, 2013, 35(4):770-776.
董文会, 常发亮, 李天平.融合颜色直方图及SIFT特征的自适应分块目标跟踪方法[J].电子与信息学报, 2013, 35(4):770-776. [DOI:10.3724/SP.J.1146.2012.01095]
Li Q, Shao C F, Yue H. Mean shift tracking with adaptive kernel window size and target model[J]. Journal of South China University of Technology:Natural Science Edition, 2013, 41(2):74-81.
李琦, 邵春福, 岳昊.核窗口尺寸和目标模型自适应的均值漂移跟踪[J].华南理工大学学报:自然科学版, 2013, 41(2):74-81. [DOI:10.3969/j.issn.1000-565X.2013.02.012]
Jeyakar J, Babu R V, Ramakrishnan K R. Robust object tracking with background-weighted local kernels[J]. Computer Vision and Image Understanding, 2008, 112(3):296-309.[DOI:10.1016/j.cviu.2008.05.005]
Li G B, Wu H F. Weighted fragments-based meanshift tracking using color-texture histogram[J]. Journal of Computer-Aided Design&Computer Graphics, 2011, 23(12):2059-2066.
李冠彬, 吴贺丰.基于颜色纹理直方图的带权分块均值漂移目标跟踪算法[J].计算机辅助设计与图形学学报, 2011, 23(12):2059-2066.
Hwang J P, Baek J, Choi B, et al. A novel part-based approach to mean-shift algorithm for visual tracking[J]. International Journal of Control, Automation and Systems, 2015, 13(2):443-453.[DOI:10.1007/s12555-013-0483-0]
Zhang Y J, Xu H L. Fragments-based tracking with multiple kernels fusion[J]. Journal of Image and Signal Processing, 2014, 3(4):94-104.
张亚军, 许宏丽.融合多核的目标分块跟踪[J].图像与信号处理, 2014, 3(4):94-104. [DOI:10.12677/JISP.2014.34013]
Li S X, Chang H X, Zhu C F. Adaptive pyramid mean shift for global real-time visual tracking[J]. Image and Vision Computing, 2010, 28(3):424-437.[DOI:10.1016/j.imavis.2009.06.012]
Li S X, Wu O, Zhu C F, et al. Visual object tracking using spatial context information and global tracking skills[J]. Computer Vision and Image Understanding, 2014, 125:1-15.[DOI:10.1016/j.cviu.2013.10.001]
Nguyen H T, Worring M, van den Boomgaard R. Occlusion robust adaptive template tracking[C ] //Proceedings of the 8th IEEE International Conference on Computer Vision. Vancouver, Canada: IEEE, 2001: 678-683. [ DOI:10.1109/ICCV.2001.10097 http://dx.doi.org/10.1109/ICCV.2001.10097 ]
Peng N S, Yang J, Liu Z. Mean shift blob tracking with kernel histogram filtering and hypothesis testing[J]. Pattern Recognition Letters, 2005, 26(5):605-614.[DOI:10.1016/j.patrec.2004.08.023]
Jang Y H, Suh J K, Kim K J, et al. Robust target model update for mean-shift tracking with background weighted histogram[J]. KSⅡ Transactions on Internet and Information Systems, 2016, 10(3):1377-1389.[DOI:10.3837/tiis.2016.03.025]
Nummiaro K, Koller-Meier E, Van Gool L. An adaptive color-based particle filter[J]. Image and Vision Computing, 2003, 21(1):99-110.[DOI:10.1016/S0262-8856(02)00129-4]
Zhu Z Y. Particle Filter Algorithm and Its Application[M]. Beijing:Science Press, 2010.
朱志宇.粒子滤波算法及其应用[M].北京:科学出版社, 2010.
Zhao Z N, Kumar M. An MCMC-based particle filter for multiple target tracking[C]//Proceedings of the 15th International Conference on Information Fusion. Singapore: IEEE, 2012: 1676-1682.
Havangi R. Target tracking based on improved unscented particle filter with Markov chain Monte Carlo[J]. IETE Journal of Research, 2017:1-13.[DOI:10.1080/03772063.2017.1369909]
Liu M, Chen E Q, Yang S Y. Application of regularization particle filtering in underwater target tracking[J]. Video Engineering, 2012, 36(9):108-111.
刘敏, 陈恩庆, 杨守义.正则化粒子滤波在水下目标跟踪中的应用[J].电视技术, 2012, 36(9):108-111. [DOI:10.3969/j.issn.1002-8692.2012.09.030]
Zou W J, Gong X, Bo Y M. Adaptive layered-sampling auxiliary particle filter's research and application in video tracking[J]. Acta Photonica Sinica, 2010, 39(3):571-576.
邹卫军, 龚翔, 薄煜明.自适应分层采样辅助粒子滤波在视频跟踪中的应用研究[J].光子学报, 2010, 39(3):571-576. [DOI:10.3788/gzxb20103903.0571]
Wang H Y. Infrared target tracking base on auxiliary particle filtering algorithm[J]. Journal of Applied Optics, 2010, 31(1):132-135.
王洪有.基于辅助粒子滤波算法的红外目标跟踪[J].应用光学, 2010, 31(1):132-135. [DOI:10.3969/j.issn.1002-2082.2010.01.030]
Wang M, Zhu Z Y, Zhang B. Research on target tracking based on UPF algorithm in glint noise environment[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2008, 28(1):79-82.
王敏, 朱志宇, 张冰.闪烁噪声环境下目标跟踪的UPF算法研究[J].弹箭与制导学报, 2008, 28(1):79-82. [DOI:10.3969/j.issn.1673-9728.2008.01.023]
Zhang M H, Liu X X. Target tracking algorithm based on MCMC unscented particle filter[J]. Systems Engineering and Electronics, 2009, 31(8):1810-1813.
张苗辉, 刘先省.基于MCMC无味粒子滤波的目标跟踪算法[J].系统工程与电子技术, 2009, 31(8):1810-1813. [DOI:10.3321/j.issn:1001-506X.2009.08.007]
Wang H J, Jing Z R, Yang Y. Target tracking algorithm based on improved extend Kalman particle filter[J]. Application Research of Computers, 2011, 28(5):1634-1636, 1643.
王华剑, 景占荣, 羊彦.基于改进扩展卡尔曼粒子滤波的目标跟踪算法[J].计算机应用研究, 2011, 28(5):1634-1636, 1643. [DOI:10.3969/j.issn.1001-3695.2011.05.010]
Zhang J G, Ji H B. IMM iterated extended Kalman particle filter based target tracking[J]. Journal of Electronics&Information Technology, 2010, 32(5):1116-1120.
张俊根, 姬红兵. IMM迭代扩展卡尔曼粒子滤波跟踪算法[J].电子与信息学报, 2010, 32(5):1116-1120. [DOI:10.3724/SP.J.1146.2009.00298]
Wan Y, Wang S Y, Qin X. IMM iterated extended particle filter algorithm[J]. Mathematical Problems in Engineering, 2013, 2013:1-8.[DOI:10.1155/2013/970158]
Lei Z D, Liu J W, Liang E W, et al. Application of the particle filter in IMM in target tracking algorithm[C ] //Proceedings of the International Conference on Bioinformatics and Computational Intelligence. Beijing: ACM, 2017: 62-65. [ DOI:10.1145/3135954.3135971 http://dx.doi.org/10.1145/3135954.3135971 ]
Wan J Q, Liang X, Ma Z F. Infrared maneuvering target tracking based on IMM-Pf with adaptive observation model[J]. Acta Electronica Sinica, 2011, 39(3):602-608.
万九卿, 梁旭, 马志峰.基于自适应观测模型交互多模型粒子滤波的红外机动目标跟踪[J].电子学报, 2011, 39(3):602-608.
Hassan W, Bangalore N, Birch P, et al. An adaptive sample count particle filter[J]. Computer Vision and Image Understanding, 2012, 116(12):1208-1222.[DOI:10.1016/j.cviu.2012.09.001]
Wang S P, Ji H B. Adaptive particle filtering for efficient object tracking[J]. Journal of System Simulation, 2010, 22(3):630-633.
王书朋, 姬红兵.用于目标跟踪的自适应粒子滤波算法[J].系统仿真学报, 2010, 22(3):8630-633. [DOI:10.16182/j.cnki.joss.2010.03.027]
Xu J J, Wei Z F, Bi D Y. Particle filter tracking algorithm based on online feature selection[J]. Opto-Electronic Engineering, 2010, 37(6):23-28, 72.
徐建军, 危自福, 毕笃彦.基于在线特征选择的粒子滤波跟踪算法[J].光电工程, 2010, 37(6):23-28, 72. [DOI:10.3969/j.issn.1003-501X.2010.06.005]
Fei F J, Sun X R, Cui P Y. Adaptive unscented particle filter with KLD-sampling for nonlinear state estimation[J]. Journal of System Simulation, 2009, 21(9):2679-2681, 2686.
裴福俊, 孙新蕊, 崔平远.基于KLD采样的自适应UPF非线性状态估计方法[J].系统仿真学报, 2009, 21(9):2679-2681, 2686.
Zhao H Y, Cai A H, Zhang S S. Research on ship tracking based on adaptive particle filter[C ] //International Workshop on Microwave and Millimeter Wave Circuits and System Technology. Chengdu, China: IEEE, 2013: 233-236. [ DOI:10.1109/MMWCST.2013.6814616 http://dx.doi.org/10.1109/MMWCST.2013.6814616 ]
Nga L T, Thuong L T, Linh M. A study on particle filter based on KLD-resampling for wireless patient tracking[J]. Industrial Engineering and Management Systems, 2017, 16(1):92-102.[DOI:10.7232/iems.2017.16.1.092]
Meng J Y, Liu J M, Han M. Marginalized particle filter for combined feature target-tracking[J]. Application Research of Computers, 2015, 32(6):312-322.
孟军英, 刘教民, 韩明.基于联合特征的边缘粒子滤波目标跟踪算法研究[J].计算机应用研究, 2015, 32(6):312-322. [DOI:10.3969/j.issn.1001-3695.2015.06.070]
Wu P L, Kong L F, Zhao F D, et al. Particle filter tracking based on color and SIFT features[C ] //International Conference on Audio, Language and Image Processing, 2008, IC-ALIP 2008. Shanghai: IEEE, 2008: 932-937. [ DOI:10.1109/ICALIP.2008.4590034 http://dx.doi.org/10.1109/ICALIP.2008.4590034 ]
Wu S D, Bao H, Zhang C B, et al. Particle filter tracking based on visual saliency feature[J]. Journal of University of Science and Technology of China, 2015, 45(11):934-942.
吴世东, 鲍华, 张陈斌, 等.基于视觉显著性特征的粒子滤波跟踪算法[J].中国科学技术大学学报, 2015, 45(11):934-942. [DOI:10.3969/j.issn.0253-2778.2015.11.009]
Wang X, Tang Z M. Application of particle filter based on feature fusion in small IR target tracking[J]. Journal of Image and Graphics, 2010, 15(1):91-97.
王鑫, 唐振民.基于特征融合的粒子滤波在红外小目标跟踪中的应用[J].中国图象图形学报, 2010, 15(1):91-97. [DOI:10.11834/jig.20100115]
Li W, Li H. Infrared target tracking based on multiple features fusion and weight selected particle filter[J]. Laser&Infrared, 2014, 44(1):35-40.
李蔚, 李辉.多特征融合的优化粒子滤波红外目标跟踪[J].激光与红外, 2014, 44(1):35-40. [DOI:10.3969/j.issn.1001-5078.2014.01.008]
Liu Y L, Shieh C S. On-line discriminative feature selection in particle filter tracking[C ] //Proceedings of the 3rd International Conference on Innovations in Bio-Inspired Computing and Applications (IBICA). Kaohsiung, Taiwan: IEEE, 2012: 262-267. [ DOI:10.1109/IBICA.2012.48 http://dx.doi.org/10.1109/IBICA.2012.48 ]
Bolme D S, Beveridge J R, Draper B A, et al. Visual object tracking using adaptive correlation filters[C ] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, California, United States: IEEE, 2010: 2544-2550. [ DOI:10.1109/CVPR.2010.5539960 http://dx.doi.org/10.1109/CVPR.2010.5539960 ]
Henriques J F, Caseiro R, Martins P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C ] //Fitzgibbon A, Lazebnik S, Perona P, et al. Computer Vision-ECCV 2012. Berlin, Heidelberg: Springer, 2012: 702-715. [ DOI:10.1007/978-3-642-33765-9_50 http://dx.doi.org/10.1007/978-3-642-33765-9_50 ]
Henriques J F, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3):583-596.[DOI:10.1109/TPAMI.2014.2345390]
Van de Weijer J, Schmid C, Verbeek J, et al. Learning color names for real-world applications[J]. IEEE Transactions on Image Processing, 2009, 18(7):1512-1523.[DOI:10.1109/TIP.2009.2019809]
Li Y, Zhu J K. A scale adaptive kernel correlation filter tracker with feature integration[C ] //Proceedings of European Conference on Computer Vision. Cham: Springer, 2014: 254-265. [ DOI:10.1007/978-3-319-16181-5_18 http://dx.doi.org/10.1007/978-3-319-16181-5_18 ]
He Y J, Li M, Zhang J L, et al. Infrared target tracking based on multi-feature correlation filter[J]. Journal of Optoelectronics·Laser, 2015, 26(8):1602-1610.
何玉杰, 李敏, 张金利, 等.基于多特征相关滤波的红外目标跟踪[J].光电子·激光, 2015, 26(8):1602-1610. [DOI:10.16136/j.joel.2015.08.0292]
He Y J, Li M, Zhang J L, et al. Infrared target tracking via weighted correlation filter[J]. Infrared Physics&Technology, 2015, 73:103-114.[DOI:10.1016/j.infrared.2015.09.010]
Danelljan M, Häger G, Khan F S, et al. Accurate scale estimation for robust visual tracking[C ] //Michel V, Andrew F, Tony P. Proceedings of British Machine Vision Conference 2014. Nottingham: BMVA Press, 2014: 65. 1-65. 11. [ DOI:10.5244/C.28.65 http://dx.doi.org/10.5244/C.28.65 ]
Danelljan M, Khan F S, Felsberg M, et al. Adaptive color attributes for real-time visual tracking[C ] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus, Ohio, Un ited States: IEEE, 2014: 1090-1097. [ DOI:10.1109/CVPR.2014.143 http://dx.doi.org/10.1109/CVPR.2014.143 ]
Bibi A, Ghanem B. Multi-template scale-adaptive kernelized correlation filters[C ] //Proceedings of the IEEE International Conference on Computer Vision Workshops. Santiago: IEEE, 2015: 613-620. [ DOI:10.1109/ICCVW.2015.83 http://dx.doi.org/10.1109/ICCVW.2015.83 ]
Danelljan M, Häger G, Khan F S, et al. Discriminative scale space tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(8):1561-1575.[DOI:10.1109/TPAMI.2016.2609928]
Zhang K H, Zhang L, Liu Q S, et al. Fast visual tracking via dense spatio-temporal context learning[C ] //European Conference on Computer Vis-ion. Cham: Springer, 2014: 127-141. [ DOI:10.1007/978-3-319-10602-1_9 http://dx.doi.org/10.1007/978-3-319-10602-1_9 ]
Li F, Yao Y J, Li P H, et al. Integrating boundary and center correlation filters for visual tracking with aspect ratio variation[C ] //Proceedings of the IEEE International Conference on Computer Vision Workshops. Venice, Italy: IEEE, 2017: 2001-2009. [ DOI:10.1109/ICCVW.2017.234 http://dx.doi.org/10.1109/ICCVW.2017.234 ]
Galoogahi H K, Sim T, Lucey S. Correlation filters with limited boundaries[C ] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015: 4630-4638. [ DOI:10.1109/CVPR.2015.7299094 http://dx.doi.org/10.1109/CVPR.2015.7299094 ]
Danelljan M, Häger G, Khan F S, et al. Learning spatially regularized correlation filters for visual tracking[C ] //Proceedings of 2015 IEEE International Conference on Computer Vision. Washington, DC: IEEE, 2015: 4310-4318. [ DOI:10.1109/ICCV.2015.490 http://dx.doi.org/10.1109/ICCV.2015.490 ]
Bibi A, Mueller M, Ghanem B. Target response adaptation for correlation filter tracking[C ] //European Conference on Computer Vision. Cham: Springer, 2016: 419-433. [ DOI:10.1007/978-3-319-46466-4_25 http://dx.doi.org/10.1007/978-3-319-46466-4_25 ]
Mueller M, Smith N, Ghanem B. Context-aware correlation filter tracking[C ] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, Hawaii, United States: IEEE, 2017: 1387-1395. [ DOI:10.1109/CVPR.2017.152 http://dx.doi.org/10.1109/CVPR.2017.152 ]
Liu T, Wang G, Yang Q X. Real-time part-based visual tracking via adaptive correlation filters[C ] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015: 4902-4912. [ DOI:10.1109/CVPR.2015.7299124 http://dx.doi.org/10.1109/CVPR.2015.7299124 ]
Liu S, Zhang T Z, Cao X C, et al. Structural correlation filter for robust visual tracking[C ] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, United States: IEEE, 2016: 4312-4320. [ DOI:10.1109/CVPR.2016.467 http://dx.doi.org/10.1109/CVPR.2016.467 ]
Fan H, Xiang J H. Robust visual tracking via local-global correlation filter[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. San Francisco, California, USA: AAAI, 2017.
Wang M M, Liu Y, Huang Z Y. Large Margin object tracking with circulant feature maps[C ] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, Hawaii, United States: IEEE, 2017: 4800-4808. [ DOI:10.1109/CVPR.2017.510 http://dx.doi.org/10.1109/CVPR.2017.510 ]
Zhou C, Guo Q, Wan L, et al. Selective object and context tracking[C ] //Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. New Orleans, LA, USA: IEEE, 2017: 1947-1951. [ DOI:10.1109/ICASSP.2017.7952496 http://dx.doi.org/10.1109/ICASSP.2017.7952496 ]
Ma C, Yang X K, Zhang C Y, et al. Long-term correlation tracking[C ] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015: 5388-5396. [ DOI:10.1109/CVPR.2015.7299177 http://dx.doi.org/10.1109/CVPR.2015.7299177 ]
Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.[DOI:10.1109/5.726791]
Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C ] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus, Ohio, United States: IEEE, 2014: 580-587. [ DOI:10.1109/CVPR.2014.81 http://dx.doi.org/10.1109/CVPR.2014.81 ]
Ren S Q, He K M, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.[DOI:10.1109/TPAMI.2016.2577031]
Danelljan M, Häger G, Khan F S, et al. Convolutional features for correlation filter based visual tracking[C ] //Proceedings of the IEEE International Conference on Computer Vision Workshops. Santiago: IEEE, 2015: 621-629. [ DOI:10.1109/ICCVW.2015.84 http://dx.doi.org/10.1109/ICCVW.2015.84 ]
Ma C, Huang J B, Yang X K, et al. Hierarchical convolutional features for visual tracking[C ] //Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015: 3074-3082. [ DOI:10.1109/ICCV.2015.352 http://dx.doi.org/10.1109/ICCV.2015.352 ]
Li Y, Zhang Y F, Xu Y L, et al. Robust scale adaptive kernel correlation filter tracker with hierarchical convolutional features[J]. IEEE Signal Processing Letters, 2016, 23(8):1136-1140.[10.1109/LSP.2016.2582783]
Danelljan M, Bhat G, Khan F S, et al. ECO: Efficient convolution operators for tracking[C ] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, Hawaii, United States: IEEE, 2017: 6931-6939. [ DOI:10.1109/CVPR.2017.733 http://dx.doi.org/10.1109/CVPR.2017.733 ]
Liu Q, Lu X H, He Z Y, et al. Deep convolutional neural networks for thermal infrared object tracking[J]. Knowledge-Based Systems, 2017, 134:189-198.[DOI:10.1016/j.knosys.2017.07.032]
Gundogdu E, Koc A, Solmaz B, et al. Evaluation of feature channels for correlation-filter-based visual object tracking in infrared spectrum[C ] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, United States: IEEE, 2016: 290-298. [ DOI:10.1109/CVPRW.2016.43 http://dx.doi.org/10.1109/CVPRW.2016.43 ]
Oliva A, Torralba A. Modeling the shape of the scene:A holistic representation of the spatial envelope[J]. International Journal of Computer Vision, 2001, 42(3):145-175.[DOI:10.1023/A:1011139631724]
Wang N Y, Yeung D Y. Learning a deep compact image representation for visual tracking[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada: ACM, 2013: 809-817.
Wang N Y, Li S Y, Gupta A, et al. Transferring rich feature hierarchies for robust visual tracking[J]. arXiv preprint arXiv:1501.04587, 2015.
Nam H, Han B. Learning multi-domain convolutional neural networks for visual tracking[C ] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, United States: IEEE, 2016: 4293-4302. [ DOI:10.1109/CVPR.2016.465 http://dx.doi.org/10.1109/CVPR.2016.465 ]
Nam H, Baek M, Han B. Modeling and propagating CNNs in a tree structure for visual tracking[J]. arXiv preprint arXiv:1608.07242, 2016.
Held D, Thrun S, Savarese S. Learning to track at 100 FPS with deep regression networks[C ] //European Conference on Computer Vision. Cham: Springer, 2016: 749-765. [ DOI:10.1007/978-3-319-46448-0_45 http://dx.doi.org/10.1007/978-3-319-46448-0_45 ]
Wang L J, Ouyang W L, Wang X G, et al. Visual tracking with fully convolutional networks[C ] //Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015: 3119-3127. [ DOI:10.1109/ICCV.2015.357 http://dx.doi.org/10.1109/ICCV.2015.357 ]
Bertinetto L, Valmadre J, Henriques J F, et al. Fully-convolutional siamese networks for object tracking[C ] //Proceedings of European Conference on Computer Vision. Cham: Springer, 2016: 850-865. [ DOI:10.1007/978-3-319-48881-3_56 http://dx.doi.org/10.1007/978-3-319-48881-3_56 ]
Valmadre J, Bertinetto L, Henriques J, et al. End-to-end representation learning for correlation filter based tracking[C ] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, Hawaii, United States: IEEE, 2017: 5000-5008. [ DOI:10.1109/CVPR.2017.531 http://dx.doi.org/10.1109/CVPR.2017.531 ]
Liu Q, He Z Y, Wang H Z, et al. Hierarchical Siamese network for thermal infrared object tracking[J]. arXiv preprint arXiv:1711.09539, 2017.
Wang Q, Gao J, Xing J L, et al. DCFNet:discriminant correlation filters network for visual tracking[J]. arXiv preprint arXiv:1704.04057, 2017.
Zhu G, Porikli F, Li H D. Beyond local search: tracking objects everywhere with instance-specific proposals[C ] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, United States: IEEE, 2016: 943-951. [ DOI:10.1109/CVPR.2016.108 http://dx.doi.org/10.1109/CVPR.2016.108 ]
Zitnick C L, Dollár P. Edge boxes: locating object proposals from edges[C ] //Proceedings of European Conference on Computer Vision. Cham: Springer, 2014: 391-405. [ DOI:10.1007/978-3-319-10602-1_26 http://dx.doi.org/10.1007/978-3-319-10602-1_26 ]
相关作者
相关机构
京公网安备11010802024621