深度全卷积网络的IVUS图像内膜与中—外膜边界检测
Lumen and media-adventitia borders detection in IVUS images using deep fully convolutional networks
- 2018年23卷第9期 页码:1335-1348
收稿:2017-11-13,
修回:2018-4-4,
纸质出版:2018-09-16
DOI: 10.11834/jig.170598
移动端阅览

浏览全部资源
扫码关注微信
收稿:2017-11-13,
修回:2018-4-4,
纸质出版:2018-09-16
移动端阅览
目的
2
心血管内超声(IVUS)图像内膜和中—外膜(MA)轮廓勾画是冠脉粥样硬化和易损斑块定量评估的必要过程。由于存在斑点噪声、图像伪影和各类斑块,重要组织边界的自动分割是一个非常困难的任务。为此,提出一种用于检测20 MHz心电门控IVUS图像内膜和MA边界方法。
方法
2
首先利用深度全卷积网络(DFCN)学习原始IVUS图像与所对应手动分割图像之间映射,预测出目标或者背景的概率图,实现医学图像语义分割。然后在此基础上,结合心血管先验形状信息,采用数学形态学闭、开操作,平滑内膜和MA边界,降低分割过程中错误分类像素或区域的影响。
结果
2
针对来自10位病人的IVUS图像及其标注信息所组成的435幅国际标准公开数据集,从线性回归、Bland-Altman分析和面积交并比(
$$ JM$$
)、面积差异百分比(
$$ PAD$$
)、Hausdorff距离(
$$ HD$$
)、平均距离(
$$AD $$
)等性能指标上,评价本文方法。实验结果表明,算法检测结果与手动勾画结果的相关性可达到0.94,其超过94.71%的结果落在95%置信区域内,具有良好一致性。内膜和MA边界的
$$ AD$$
指标分别为:0.07 mm和0.08 mm;
$$ HD$$
指标分别为:0.21 mm和0.30 mm。
$$ JM$$
指标分别为0.92和0.93;
$$ PAD$$
指标分别为5%和4%。此外,对临床所采集的100幅IVUS图像进行了测试,证明本文学习的模型在跨数据集上具有较好的泛化能力。
结论
2
与现有的国际算法比较,本文方法提高了各类斑块、声影区域和血管分支等因素的识别能力,不受超声斑点的影响,能准确地、可重复地检测出IVUS图像中的关键目标边界。
Objective
2
The delineation of lumen and media-adventitia (MA) borders in intravascular ultrasound (IVUS) images is necessary for quantitative assessment of coronary atherosclerosis and vulnerable plaques. Automatic segmentation for detecting these important borders represents a difficult task due to ultrasonic speckle
various artifacts and atherosclerotic plaques. In this paper
we present a simple yet effective fully automated methodology for the detection of lumen and MA borders in 20 MHz ECG-gated intravascular ultrasound frames.
Method
2
The delineation of lumen and MA borders in IVUS images was solved by two major stages:region segmentation and border refinement in proposed method
or key point detection and curve fitting in previous approaches. Different from the second class solution
the first class solution was more adopted because borders from most IVUS images to be analyzed are able to be observed. Most of automatic detection algorithms for lumen and media-adventitia border from IVUS images is lack of consideration of professional clinicians observing IVUS images
identifying borders of interest and delineating the outline of organs or tissues. However
computer algorithms based on machine learning
computer vision and other emerging intelligent technologies extract hierarchical and discriminative deep features by learning given training dataset
simulate how clinicians recognize lumen and media-adventitia border
therefore often obtain better segmentation results. In view of problems of the existing automatic algorithms for detecting lumen and media-adventitia border
this work simulates the process of clinicians identifying the lumen and media-adventitia border
and proposes an automatic algorithm combining a priori shape information of coronary artery and deep convolutional networks. First the proposed approach uses deep fully convolutional networks (DFCN) to directly learn mappings between raw IVUS images and their corresponding manual segmentations in order to predict an object or background probability map across the whole image. Then
on basis of the above coarse segmentation and the
prior
information of vessel appearance we employed mathematical morphological post-processing open or close operator and some simple image processing steps to smooth the extracted lumen and MA borders from the output of DFCN. The border refinement stage is to eliminate misclassified pixels or regions in the stage of medical image semantic segmentation.
Result
2
Our method is evaluated on a publicly available dataset that consists of 435 IVUS images
in vivo
acquired from ten patients in different hospital or medical center using linear regression
Bland-Altman analysis and several measure metrics such as Jaccard Measure (
$$JM $$
)
Percentage of Area Difference (
$$PAD $$
)
Hausdorff Distance (
$$ HD$$
) and Average Distance (
$$AD $$
). The obtained results demonstrate that our method is accurate
reliable and capable of detecting lumen and MA borders with good correlation r=0.94
good agreement with larger than 94.71% of results within the 95% confidence interval
small average distance:lumen 0.07 mm
MA 0.08 mm
and small Hausdorff distance:lumen 0.21 mm
MA 0.30 mm.
$$JM$$
s of lumen and MA borders are 0.92 and 0.93
respectively.
$$PAD$$
s of lumen and MA borders are 5% and 4%
respectively. In addition
we apply the trained model on the 100 IVUS images collected from the Guangzhou General Hospital and obtain successful detection results.
Conclusion
2
Compared with existing eight international algorithms
it has improved capability of recognizing different kinds of plaques
acoustic shadow
branches of vessel
and more accurately and reproducibly detected borders of key organ in IVUS images.
Laslett L J, Alagona Jr P, Clark Ⅲ B A, et al. The worldwide environment of cardiovascular disease:prevalence, diagnosis, therapy, and policy issues:a report from the American College of Cardiology[J]. Journal of the American College of Cardiology, 2012, 60(25):S1-S49.[DOI:10.1016/j.jacc.2012.11.002]
Xing D, Yang F, Huang J, et al. Hard plaque characteristics based media-adventitia border detection in intravascular ultrasound images[J]. Chinese Journal of Biomedical Engineering, 2012, 31(1):25-31.
邢栋, 杨丰, 黄靖, 等.结合硬斑块特征的心血管内超声图像中-外膜边缘检测[J].中国生物医学工程学报, 2012, 31(1):25-31.[DOI:10.3969/j.issn.0258-8021.2012.01.005]
Unal G, Bucher S, Carlier S, et al. Shape-driven segmentation of the arterial wall in intravascular ultrasound images[J]. IEEE Transactions on Information Technology in Biomedicine, 2008, 12(3):335-374.[DOI:10.1109/TITB.2008.920620]
Balocco S, Gatta C, Ciompi F, et al. Standardized evaluation methodology and reference database for evaluating IVUS image segmentation[J]. Computerized Medical Imaging and Graphics, 2014, 38(2):70-90.[DOI:10.1016/j.compmedimag.2013.07.001]
Nissen S E, Yock P. Intravascular ultrasound:novel pathophysiological insights and current clinical applications[J]. Circulation, 2001, 103(4):604-616.[DOI:10.1161/01.CIR.103.4.604]
Katouzian A, Angelini E D, Carlier S G, et al. A state-of-the-art review on segmentation algorithms in intravascular ultrasound (IVUS) images[J]. IEEE Transactions on Information Technology in Biomedicine, 2012, 16(5):823-834.[DOI:10.1109/TITB.2012.2189408]
Cardinal M H R, Soulez G, Tardif J C, et al. Fast-marching segmentation of three-dimensional intravascular ultrasound images:a pre-and post-intervention study[J]. Medical Physics, 2010, 37(7):3633-3647.[DOI:10.1118/1.3438476]
Cardinal M H R, Meunier J, Soulez G, et al. Intravascular ultrasound image segmentation:a three-dimensional fast-marching method based on gray level distributions[J]. IEEE Transactions on Medical Imaging, 2006, 25(5):590-601.[DOI:10.1109/TMI.2006.872142]
Destrempes F, Cardinal M H R, Allard L, et al. Segmentation method of intravascular ultrasound images of human coronary arteries[J]. Computerized Medical Imaging and Graphics, 2014, 38(2):91-103.[DOI:10.1016/j.compmedimag.2013.09.004]
Ciompi F, Pujol O, Gatta C, et al. HoliMAb:a holistic approach for media-adventitia border detection in intravascular ultrasound[J]. Medical Image Analysis, 2012, 16(6):1085-1100.[DOI:10.1016/j.media.2012.06.008]
Lin M D, Yang F, Liang S J, et al. External elastic membrane border detection based on sequential learning and prior shape information for intravascular ultrasound images[J]. Journal of Image and Graphics, 2016, 21(5):646-656.
林慕丹,杨丰, 梁淑君, 等.结合先验形状信息和序贯学习的心血管内超声外弹力膜检测[J].中国图象图形学报, 2016, 21(5):646-656. [DOI:10.11834/jig.20160512]
Qiu X, Huang J, Yang F, et al. Image enhancement based media-adventitia border detection in intravascular ultrasound images[J]. Journal of Image and Graphics, 2012, 17(4):537-545.
邱璇, 黄靖, 杨丰, 等.结合图像增强的心血管内超声中-外膜边缘检测[J].中国图象图形学报, 2012, 17(4):537-545. [DOI:10.11834/jig.20120412]
Gao Z F, Hau W K, Lu M H, et al. Automated framework for detecting lumen and media-adventitia borders in intravascular ultrasound images[J]. Ultrasound in Medicine and Biology, 2015, 41(7):2001-2021.[DOI:10.1016/j.ultrasmedbio.2015.03.022]
Mendizabal-Ruiz E G, Rivera M, Kakadiaris I A. Segmentation of the luminal border in intravascular ultrasound B-mode images using a probabilistic approach[J]. Medical Image Analysis, 2013, 17(6):649-670.[DOI:10.1016/j.media.2013.02.003]
Mendizabal-Ruiz E G, Kakadiaris I A. A physics-based intravascular ultrasound image reconstruction method for lumen segmentation[J]. Computers in Biology and Medicine, 2016, 75:19-29.[DOI:10.1016/j.compbiomed.2016.05.007]
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems 25. Lake Tahoe, Nevada, USA: Curran Associates Inc., 2012: 1097-1105.
Ren S Q, He K M, Girshick R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.[DOI:10.1109/TPAMI.2016.2577031]
Long J, Shelhamer E, Darrel T. Fully convolutional networks for semantic segmentation[C]//Proceedings of 2015 IEEE International Conference on Computer Vision and Pattern Recognition. Boston, Massachusetts, USA: IEEE, 2015: 3431-3440. [ DOI:10.1109/CVPR.2015.7298965 http://dx.doi.org/10.1109/CVPR.2015.7298965 ]
Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer, 2015: 234-241. [ DOI:10.1007/978-3-319-24574-4_28 http://dx.doi.org/10.1007/978-3-319-24574-4_28 ]
Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015: 1520-1528. [ DOI:10.1109/ICCV.2015.178 http://dx.doi.org/10.1109/ICCV.2015.178 ]
Badrinarayanan V, Kendall A, Cipolla R. Segnet:a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.[DOI:10.1109/TPAMI.2016.2644615]
Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning. Lille, France: PMLR, 2015: 448-456.
Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.[DOI:10.1109/5.726791]
Bottou L. Large-scale machine learning with stochastic gradient descent[C]//Proceedings of the 19th International Conference on Computational Statistics. Paris, France: Springer, 2010: 177-186. [ DOI:10.1007/978-3-7908-2604-3_16 http://dx.doi.org/10.1007/978-3-7908-2604-3_16 ]
LeCun Y, Bottou L, Orr G B, et al. Efficient backprop[M]//Orr G B, Müller K R. Neural Networks: Tricks of The Trade. Berlin, Heidelberg: Springer, 1998: 9-50. [ DOI:10.1007/3-540-49430-8_2 http://dx.doi.org/10.1007/3-540-49430-8_2 ]
Rumelhar D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088):533-536.[DOI:10.1038/323533a0]
Menchón-Lara R M, Sancho-Gomez J L. Fully automatic segmentation of ultrasound common carotid artery images based on machine learning[J]. Neurocomputing, 2015, 151:161-167.[DOI:10.1016/j.neucom.2014.09.066]
Tajbakhsh N, Shin J Y, Gurudu S R, et al. Convolutional neural networks for medical image analysis:full training or fine tuning?[J]. IEEE Transactions on Medical Imaging, 2016, 35(5):1299-1312.[DOI:10.1109/TMI.2016.2535302]
Jia Y Q, Shelhamer E, Donahue J, et al. Caffe: convolutional architecture for fast feature embedding[C] //Proceedings of the 22nd ACM International Conference on Multimedia. Orlando, Florida, USA: ACM, 2014: 675-678. [ DOI:10.1145/2647868.2654889 http://dx.doi.org/10.1145/2647868.2654889 ]
相关作者
相关机构
京公网安备11010802024621