LoVPE 3维局部特征描述子
LoVPE three-dimensional local feature descriptor
- 2018年23卷第9期 页码:1349-1358
收稿:2017-11-17,
修回:2018-4-8,
纸质出版:2018-09-16
DOI: 10.11834/jig.170582
移动端阅览

浏览全部资源
扫码关注微信
收稿:2017-11-17,
修回:2018-4-8,
纸质出版:2018-09-16
移动端阅览
目的
2
局部特征描述子在3维目标识别等任务中能够有效地克服噪声、不同点云分辨率、局部遮挡、点云散乱分布等因素的干扰,但是已有3维描述子难以在性能和效率之间取得平衡,为此提出LoVPE(局部多视点投影视图相关编码)特征描述子用于复杂场景中的3维目标识别。
方法
2
首先构建局部参考坐标系,将世界坐标系下的局部表面变换至关键点局部参考坐标系下的局部表面;然后绕局部参考坐标系各坐标轴旋转
$$K$$
个角度获得多视点局部表面,将局部表面内的点投影至局部参考系各坐标平面内,投影平面分成
$$N$$
×
$$N$$
块,统计每块内投影点的散布信息生成特征描述向量;最后将各视点特征描述向量进行两两视图对相关编码得到低维度特征描述向量,采用ZCA(零项分量分析)白化降低特征描述向量各维间相关性得到LoVPE描述子。
结果
2
在公用数据集上进行不同描述子对噪声、不同分辨率、遮挡及杂波等干扰鲁棒性的特征匹配实验,实验结果表明,提出的描述子特征匹配率与现有最佳描述子处于同等水平,但保持了较低的特征维度和较高的计算效率,维度降低约1半、特征构建及特征匹配时间缩短为现有最佳描述子的1/4。
结论
2
提出一种新的3维局部特征描述子,具有强描述能力,对噪声、不同网格分辨率、遮挡及杂波等具有强鲁棒性,存储消耗较少且计算效率较高,该方法适用于模型点云及真实点云数据,可用于复杂场景中的3维目标识别。
Objective
2
In recent years
due to the availability of low-cost scanners and high-performance computing devices
three-dimensional object recognition has become an active research area in computer vision tasks. Local feature descriptors can effectively overcome the interference of noise
different point cloud resolution
local occlusion
scattered cloud point distribution
and other issues in 3D object recognition tasks. However
difficulties occur in balancing the performance and efficiency of the 3D descriptor. Therefore
a local multi-view projection correlation encoding (LoVPE) feature descriptor is proposed for 3D object recognition in complex scenes.
Method
2
The sub-construction process of the descriptor is divided into three steps. First
a local reference frame of the key point is constructed and the local surface in the world coordinate system is transformed to it. The local reference frame provides spatial information such that the descriptor indicates invariance to translation and rotation and is robust to noise and clutter. Then
the K angles are rotated around each coordinate axis of the local reference coordinate system to obtain the multi-view local surface. In each coordinate plane of the local reference frame
the projection plane is divided into NxN blocks
to which the points on the local surface are projected
and the scatter information of the projection points in each block is calculated to generate the feature description vector. Multi-view projection provides descriptive information that makes the descriptor descriptive
robust to noise
and possess different rates of grid resolution
clutter
and occlusion. Finally
view-pair of each view feature description vector is used to construct the correlative encoding to obtain the low-dimension feature description vector
using zero component analysis whitening to reduce the correlation between its dimensions to obtain the LoVPE descriptor. The view-pair correlative encoding effectively avoids the dimension explosion problem caused by the simple combination of the viewpoint feature description vectors in the past. At the same time
the encoding provides a more invariant spatial relationship
is more robust to interference
and highlights the key information of the object.
Result
2
For descriptive ability
robustness and recognition capability in complex scenes
the proposed descriptor and other descriptors were compared some public datasets. The robustness of the descriptors to noise and different grid resolutions are validated on Bologna datasets. The robustness of the descriptors to occlusion and clutter are validated on Queen's lidar and SHOTDataset5 datasets. The results show that
compared with other descriptors
with increasing the standard deviation of the Gaussian noise
the proposed descriptor still maintains good performance. As the descending sampling rate increases
the advantages of the proposed descriptor are gradually reflected and maintains a good performance. The proposed descriptor is superior to others in terms of descriptive ability and robustness
as well as maintains lower feature dimensions and higher computational efficiency.
Conclusion
2
A new 3D local feature descriptor is proposed
which has strong descriptive ability
strong robustness against noise
different grid resolution
occlusion and clutter
less memory consumption
and high computational efficiency. The descriptor is suitable for model point cloud and real point cloud data and can be used for 3D target recognition in complex scenes.
Mamic G, Bennamoun M. Representation and recognition of 3D free-form objects[J]. Digital Signal Processing, 2002, 12(1):47-76.[DOI:10.1006/dspr.2001.0412]
Gao Y, Dai Q H. View-based 3D object retrieval:challenges and approaches[J]. IEEE Multimedia, 2014, 21(3):52-57.[DOI:10.1109/MMUL.2014.20]
Guo Y L, Sohel F, Bennamoun M, et al. TriSI: a distinctive local surface descriptor for 3D modeling and object recognition[C]//Proceedings of the 8th International Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. Barcelona, Spain: Scitepress, 2013: 86-93. [ DOI:10.5220/0004277600860093 http://dx.doi.org/10.5220/0004277600860093 ]
Guo Y L, Sohel F, Bennamoun M, et al. Rotational projection statistics for 3D local surface description and object recognition[J]. International Journal of Computer Vision, 2013, 105(1):63-86.[DOI:10.1007/s11263-013-0627-y]
Mian A S, Bennamoun M, Owens R. Three-dimensional model-based object recognition and segmentation in cluttered scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(10):1584-1601.[DOI:10.1109/TPAMI.2006.213]
Lei Y J, Bennamoun M, Hayat M, et al. An efficient 3D face recognition approach using local geometrical signatures[J]. Pattern Recognition, 2014, 47(2):509-524.[DOI:10.1016/j.patcog.2013.07.018]
Bennamoun M, Guo Y L, Sohel F. Feature selection for 2D and 3D face recognition[M]//Wiley Encyclopedia of Electrical and Electronics Engineering. New Jersey, USA: John Wiley & Sons, Inc. 1999: 1-54. [ DOI:10.13140/2.1.4656.4165 http://dx.doi.org/10.13140/2.1.4656.4165 ]
Restrepo M I, Mundy J L. An evaluation of local shape descriptors in probabilistic volumetric scenes[C]//Proceedings of British Machine Vision Conference. England, UK: BMVA Press, 2012: 1-11. [ DOI:10.5244/C.26.46 http://dx.doi.org/10.5244/C.26.46 ]
Tombari F, Salti S, Di Stefano L. Performance evaluation of 3D keypoint detectors[J]. International Journal of Computer Vision, 2013, 102(1-3):198-220.[DOI:10.1007/s11263-012-0545-4]
Guo Y L, Bennamoun M, Sohel F, et al. A comprehensive performance evaluation of 3D local feature descriptors[J]. International Journal of Computer Vision, 2016, 116(1):66-89.[DOI:10.1007/s11263-015-0824-y]
Johnson A E, Hebert M. Using spin images for efficient object recognition in cluttered 3D scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(5):433-449.[DOI:10.1109/34.765655]
Tombari F, Salti S, Di Stefano L. Unique shape context for 3D data description[C]//Proceedings of ACM Workshop on 3D Object Retrieval. Firenze: ACM, 2010: 57-62. [ DOI:10.1145/1877808.1877821 http://dx.doi.org/10.1145/1877808.1877821 ]
Salti S, Tombari F, Di Stefano L. SHOT:unique signatures of histograms for surface and texture description[J]. Computer Vision and Image Understanding, 2014, 125:251-264.[DOI:10.1016/j.cviu.2014.04.011]
Malassiotis S, Strintzis M G. Snapshots:a novel local surface descriptor and matching algorithm for robust 3D surface alignment[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(7):1285-1290.[DOI:10.1109/TPAMI.2007.1060]
Rusu R B, Blodow N, Beetz M. Fast point feature histograms (FPFH) for 3D registration[C]//Proceedings of 2009 IEEE International Conference on Robotics and Automation. Kobe, Japan: IEEE, 2009: 3212-3217. [ DOI:10.1109/ROBOT.2009.5152473 http://dx.doi.org/10.1109/ROBOT.2009.5152473 ]
Bai X, Bai S, Zhu Z T, et al. 3D shape matching via two layer coding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(12):2361-2373.[DOI:10.1109/TPAMI.2015.2424863]
Abdi H, Williams L J. Principal component analysis[J]. Wiley Interdisciplinary Reviews:Computational Statistics, 2010, 2(4):433-459.[DOI:10.1002/wics.101]
Guo Y L, Bennamoun M, Sohel F, et al. 3D object recognition in cluttered scenes with local surface features:a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(11):2270-2287.[DOI:10.1109/TPAMI.2014.2316828]
Zai D W, Li J, Guo Y L, et al. Pairwise registration of TLS point clouds using covariance descriptors and a non-cooperative game[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 134:15-29.[DOI:10.1016/j.isprsjprs.2017.10.001]
Hackel T, Savinov N, Ladicky L, et al. Semantic3D.net:a new large-scale point cloud classification benchmark[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, IV-1-W1:91-98.[DOI:10.5194/isprs-annals-IV-1-W1-91-2017]
相关文章
相关作者
相关机构
京公网安备11010802024621