结合HSV空间的水面图像特征水岸线检测
Shoreline detection method by combining HSV spatial water image feature
- 2018年23卷第4期 页码:526-533
收稿:2017-09-08,
修回:2017-11-10,
纸质出版:2018-04-16
DOI: 10.11834/jig.170498
移动端阅览

浏览全部资源
扫码关注微信
收稿:2017-09-08,
修回:2017-11-10,
纸质出版:2018-04-16
移动端阅览
目的
2
水岸线可用于无人艇视觉导航、运动状态估计,是无人水面艇自主航行的重要参照特征。水岸线类似于水天线,但由于水波、反光、倒影等因素,内河水岸线检测的背景更复杂,难以采用现有水天线检测技术。通过分析水面图像在HSV空间的特征,发现陆地区域的饱和度值均高于天空和水面区域;在光照较暗时,色彩信息不能使用,亮度图像中的陆地区域相对其他区域较暗,但仍然存在水岸线轮廓特征。基于这一分析结果,提出结合HSV空间的水面图像特征水岸线检测方法。
方法
2
首先将RGB图像经过高斯滤波后变换到HSV空间,依据权重进行HSV空间特征分量选取,接着进行像素点非线性增强;然后在增强的图像上进行区域分割,并将各个区域定义为基底图像;其次分析饱和度图像的行列特性,提取高饱和度的陆地区域,并将其定义为模板图像,将模板图像覆盖在各个基底图像上,按重叠区域面积比选取基底图像;最后通过边缘检测算子检测水岸线。
结果
2
本文采集不同季节,不同光照强度的水面图像进行水岸线检测实验,实验结果表明本文算法可以在不同光照环境下准确检测出水岸线,且轮廓清晰完整,本文算法的实时性可达到1帧/s。
结论
2
本文提出的结合HSV空间的水面图像特征水岸线检测方法,可以在不同的光照环境中有效地检测出轮廓清晰完整的水岸线,验证了水面图像分析的结论,本文算法可适用于无人艇视觉导航中。
Objective
2
The application of unmanned surface vehicles in inland rivers has broad prospects
such as water quality monitoring and hydrographic surveying and mapping. However
the existing visual research on unmanned surface vehicles is mostly based on sea environment. When unmanned surface vehicles navigate autonomously
the shoreline of an inland river is equivalent to the skyline detected in the sea environment
which has great significance for visual navigation of unmanned surface vehicles. Shoreline can be used for image partition
finding a water surface area
obstacle avoidance navigation
and estimating the motion state of unmanned surface vehicles. Shoreline is an important reference for the autonomous navigation of unmanned surface vehicles. Although a shoreline is similar to a skyline
the background of a shoreline is more complex than that of a skyline due to the influence of water waves
reflected light
and inverted image. The existing skyline detection method is unsuitable for shoreline detection. Inspired by the color perception mechanism of the human visual system
we propose to detect shoreline based on hue
saturation
and value (HSV).
Method
2
We collect water surface images by using the camera of an unmanned surface vehicle and analyze the image features in the HSV color space. The saturation of a land area is higher than that of sky and water areas. When the light situation is dark
the hue information cannot be used. The land area in an image is darker than other areas
but the image can still be used for shoreline detection. On the basis of this analysis result
we propose a shoreline detection method by combining HSV spatial water image features. First
we transform an RGB image into an HSV color space after Gaussian filtering. The Gaussian model can effectively overcome the interference caused by a change in illumination and the disturbance of a water image. Components in the HSV color space are selected by the weight of the land area features
and the selected components are enhanced nonlinearly to improve their contrast. Second
we segment the enhanced image and define each region as a bottom image. Third
we analyze the features of rows and columns in the original saturation image and extract land areas with high saturation as template images. We cover each bottom image with the template image and select the bottom image by the overlap area ratio. After overlapping the selected bottom image
we obtain the final land area image. Finally
we obtain the absolute shoreline by using an edge detection operator and removing the overlapping line of the sky and land in the topside.
Result
2
Water surface images with different light intensities in different seasons are collected. When we select images during middays of spring and autumn
the detected shorelines are clear and complete. When we select images during afternoon
the backgrounds of the surface images are complex due to poor lighting
but we still can accurately detect shorelines. When we select reflection images of water surfaces to perform a comparative experiment
the proposed method can effectively remove the reflection interference of the water surfaces. When we select images of water surfaces during sunset
during which the light tends to be red
the proposed method is unaffected by the red light. When we select images of water surfaces with sun reflection
the proposed method can remove the sun reflection in the images. Therefore
we can conclude that the proposed method has strong anti-interference. The experimental results reveal that the method can accurately detect shorelines in different light environments and ensure that the contours of the shorelines are clear and complete. The real-time result of the method can reach 1 frame/s.
Conclusion
2
The proposed method can effectively detect shorelines in different light environments and ensure that their contours are clear and complete. The method can be applied for visual navigation of unmanned surface vehicles.
Li J L. Development and application of unmanned surface vehicle[J]. Fire Control&Command Control, 2012, 37(6):203-207.
李家良.水面无人艇发展与应用[J].火力与指挥控制, 2012, 37(6):203-207. [DOI:10.3969/j.issn.1002-0640.2012.06.053]
Zhou H G, Ma A M, Xia L. A Research on the development of the unmanned surface vehicles[J]. National Defense Science&Technology, 2009, 30(6):17-20.
周洪光, 马爱民, 夏朗.无人水面艇航行器发展[J].国防科技, 2009, 30(6):17-20. [DOI:10.3969/j.issn.1671-4547.2009.06.005]
Wang B, Su Y M, Wan L, et al. Sea sky line detection method of unmanned surface vehicle based on gradient saliency[J]. Acta Optica Sinica, 2016, 36(5):#0511002.
王博, 苏玉民, 万磊, 等.基于梯度显著性的水面无人艇的海天线检测方法[J].光学学报, 2016, 36(5):#0511002.
Jing H, Chen X Q, Gu Z W. A method for coastline extraction based on edges[J]. Computer Simulation, 2006, 23(8):89-93, 101.
荆浩, 陈学佺, 顾志伟.一种基于边缘特征的海岸线检测方法[J].计算机仿真, 2006, 23(8):89-93, 101.][DOI:10.3969/j.issn.1006-9348.2006.08.026]
Jiang C L, Jiang H H, Zhang C L, et al. A new method of sea-sky-line detection[C]//The Third Intern ational Symposium on Intelligent Information Technology and Security Informatics. Jinggangshan: IEEE, 2010: 740-743. [ DOI:10.1109/ⅡTSI.2010.147 http://dx.doi.org/10.1109/ⅡTSI.2010.147 ]
Wang X B, Yong Y, Huo Y H, et al. Sea-sky-line detection algorithm based on texture analysis[J]. Infrared Technology, 2013, 35(1):42-46.
王兵学, 雍杨, 霍义华, 等.基于纹理特征分析的海天线检测方法[J].红外技术, 2013, 35(1):42-46.
Liu J Y, Chen J B, Wang Z H, et al. Sea-sky line detection based on superpixel classification[J]. Metrology&Measurement Technique, 2017, 44(3):104-106, 109.
刘靖逸, 陈金波, 王志恒, 等.基于超像素分类的海天线检测方法[J].计量与测试技术, 2017, 44(3):104-106, 109. [DOI:10.15988/j.cnki.1004-6941.2017.03.051]
Pei L L, Shi Z L, Luo H B. Detection of sea-level based on wavelet multi-scale analysis[J]. Journal of Shenyang University of Technology, 2003, 25(2):125-128.
裴立力, 史泽林, 罗海波.一种基于小波多尺度分析的水天线检测方法[J].沈阳工业大学学报, 2003, 25(2):125-128. [DOI:10.3969/j.issn.1000-1646.2003.02.011]
Shi W J, Wu Z C, Liu X H, et al. Sky-sea line extraction based on energy accumulation&Gabor transform in low contrast conditions[J]. Infrared Technology, 2010, 32(5):283-287.
石文君, 吴中川, 刘晓红, 等.低对比度条件下基于能量积累和Gabor变换的海天线提取[J].红外技术, 2010, 32(5):283-287. [DOI:10.3969/j.issn.1001-8891.2010.05.008]
Yang L. Study on infrared small target detection and tracking algorithm under complex backgrounds[D]. Shanghai: Shanghai Jiao Tong University, 2006.
杨磊. 复杂背景条件下的红外小目标检测与跟踪算法研究[D]. 上海: 上海交通大学, 2006.
Liang S H, Wu W, Li B, et al. Sea-sky-line detection algorithm based on Seam Carving[J]. Infrared and Laser Engineering, 2013, 42(10):2817-2821.
梁世花, 吴巍, 李波, 等.基于Seam Carving的海天线检测算法[J].红外与激光工程, 2013, 42(10):2817-2821. [DOI:10.3969/j.issn.1007-2276.2013.10.041]
Xiong Y Z, Wang J H. Acquiring environmental condition for unmanned surface vehicle using skyline information[J]. Journal of Shanghai Dianji University, 2015, 18(4):238-243.
熊亚洲, 王建华.一种利用天水线感知无人水面艇运行环境的方法[J].上海电机学院学报, 2015, 18(4):238-243. [DOI:10.3969/j.issn.2095-0020.2015.04.009]
Leng M P, Bao S S. Color image segmentation algorithm based on hue level histogram and region merging[J]. Journal of Computer Applications, 2010, 30(3):653-656.
冷美萍, 鲍苏苏.基于色调直方图和区域合并的彩色图像分割算法[J].计算机应用, 2010, 30(3):653-656. [DOI:10.3724/SP.J.1087.2010.00653]
Jiang L C, Shen G Q, Zhang G X. An image retrieval algorithm based on HSV color segment histograms[J]. Mechanical&Electrical Engineering Magazine, 2009, 26(11):54-57.
姜兰池, 沈国强, 张国煊.基于HSV分块颜色直方图的图像检索算法[J].机电工程, 2009, 26(11):54-57. [DOI:10.3969/j.issn.1001-4551.2009.11.016]
Bieniek A, Moga A. An efficient watershed algorithm based on connected components[J]. Pattern Recognition, 2000, 33(6):907-916.[DOI:10.1016/S0031-3203(99)00154-5]
Canny J. A computational approach to edge detection[J]. IEEE Transactionson Pattern Analysis and Machine Intelligence, 1986, PAMI-8(6):679-698.[DOI:10.1109/TPAMI.1986.4767851]
京公网安备11010802024621