稳定场图像重建中的传递函数研究
Transfer function research of stable field reconstruction
- 2018年23卷第3期 页码:333-345
收稿:2017-08-30,
修回:2017-10-31,
纸质出版:2018-03-16
DOI: 10.11834/jig.170477
移动端阅览

浏览全部资源
扫码关注微信
收稿:2017-08-30,
修回:2017-10-31,
纸质出版:2018-03-16
移动端阅览
目的
2
针对2维图像重建(或修复)的准确性和效率问题,以传递函数为核心并提出相关重建算法。
方法
2
在图像局部纹理稳定场模型的基础上,针对每一个缺损像素点,考虑其周围已知区域的像素点都对它进行能量传递,且在重建过程中首先将能量传递到最近邻域内,由此构造传递函数并引入标量场的二阶泰勒展开来完成,最终依据最近邻域内的能量值,以插值完成重建。
结果
2
采用重新构造的传递函数并结合不同的插值方法分别对缺损的几何图形、灰度图像及彩色图像进行重建,结果与图像场方向导数的局部区域重建算法、典型的CDD(curvature driven diffusion)、BSCB(Bertalmio Sapiro Caselles Ballester)、TV(total variation)重建算法相比,重建准确率分别提高了6%、10%、15%、13%,峰值信噪比(PSNR)分别提高了2 dB、1 dB、3 dB、2.5 dB,并且图像缺损边缘及纹理细节的重建更加清晰。
结论
2
对2维图像重建的传递函数的研究及所提出的相关重建算法,对于不同类型图像不同程度的缺损,以保持较好的整体视觉效果和重建效率为前提,较大地提高了重建准确性和PSNR,尤其在图像缺损区域边缘及纹理细节的重建上表现出色。
Objective
2
Reconstructing defective images accurately and efficiently has become increasingly important nowadays. With the development of image analysis and recognition
many reconstructed images have been used for feature extraction
and few algorithms can realize accurate and efficient reconstruction effect. This study reconstructs local image regions based on the directional derivative of a field and proposes a stable field model of image local texture to achieve accuracy and reconstruction efficiency. The point source effect function is chosen as the transfer function of the pixel information relationship between the known region and the defect region. However
the designed point source effect function only considered the function of the gradient in the process of energy transfer. The energy transfer value of pixels in the defective region is calculated. The weighted summation is realized by average filtering. Experimental data show that the reconstruction of the edge of the geometry is not fine enough to greatly improve the accuracy of the actual image reconstruction. Given the problem of the accuracy and efficiency of the two-dimensional image reconstruction (or inpainting)
this study designed the transfer function as the core function
proposed a new relative reconstruction algorithm
and mainly introduced the transfer function because this function involved energy transformation.
Method
2
Stationary images can be regarded as a stable energy field because of the stable result of the interaction between the surface and structure of object and light. Several studies have reconstructed defect images based on a stable field and have proven that the reconstruction effects can achieve the desired visual effect and high accuracy rate. Thus
the stable field model is used in this paper to describe the image local region. The energy value of the defect points is almost the same as that of the points in the nearest neighborhood. Thus
considering the value of these points is of great importance. In view of each pixel in the defect region
a reconstruction model considers the pixels in the known region as transmitting energy to each known pixel. During the reconstruction process
the energy is first transmitted into the nearest neighborhood
the transfer function is then constructed
and second-order Taylor expansion is introduced to achieve this process. Finally
the reconstruction is completed by interpolation according to the energy value in the nearest neighbor domain.
Result
2
This study reconstructed defect typical geometric graphs
gray images
and color images by using an algorithm that contains the transfer function and different interpolation methods. The interpolation methods include nearest neighbor interpolation
bilinear interpolation
and cubic convolution interpolation. Reconstruction results obtained by different interpolation methods are different. Compared with studies on reconstructing image local regions based on the directional derivative of a field
the typical curvature-driven diffusion
Bertalmio-Sapiro-Caselles-Ballester method
and total variation reconstruction algorithms
the reconstruction accuracy increased by approximately 6%
10%
15%
and 13% respectively
and the peak signal-to-noise ratio (PSNR) increased by approximately 2
1
3
and 2.5 dB
respectively. The reconstruction of the damaged edges and texture is clearer than that of the relative reconstruction models. Results improved considerably compared with traditional models because the proposed algorithm differs from traditional algorithms in certain aspects. For traditional algorithms
the main research idea is to use the information around the image defect area to transfer the inside of the region through several iterations. Once an iteration is performed
the value of the transfer function is updated to satisfy the visual effect of human visual observation. However
our algorithm does not involve iterations and transfers the energy value only once.
Conclusion
2
An improved algorithm based on the foundation of the image local region's stable field model and the inpainting algorithms based on the stable field is proposed in this study
which investigates the transfer function of two-dimensional image reconstruction and the related reconstruction algorithms and shows the reconstruction of image edge and texture details. To maintain a good visual effect
the proposed method greatly improved reconstruction accuracy and PSNR
especially in the image defect region edge
and performs well in reconstructing texture details. Experimental results show that the proposed algorithm obtains good effects and has universal applicability to different types of images with varying degrees of defect.
Wu Y D, Zhang H Y, Wu B. Digital Image Inpainting[M]. Beijing:Science Press, 2010:1-19.
吴亚东, 张红英, 吴斌.数字图像修复技术[M].北京:科学出版社, 2010:1-19.
Dickerman L. Reviewed work:the commissar vanishes:the falsification of photographs and art in Stalin's Russia by David King[J]. The Art Bulletin, 1998, 80(4):755-757.[DOI:10.2307/3051326]
Barbu T. Variational image inpainting technique based on nonlinear second-order diffusions[J]. Computers&Electrical Engineering, 2016, 54:345-353.[DOI:10.1016/j.compeleceng. 2016.04.012]
Xiang C Y, Cao Y J, Duan P S, et al. An improved exemplar-based image inpainting algorithm[C]//Proceedings of the 9th International Conference on Computer Science & Education. Vancouver, BC, Canada: IEEE, 2014: 770-775. [ DOI: 10.1109/ICCSE.2014.6926566 http://dx.doi.org/10.1109/ICCSE.2014.6926566 ]
Bertalmío M, Sapiro G, Caselles V, et al. Image inpainting[C]//Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques. New York, USA: ACM, 2000: 417-424.[ DOI: 10.1145/344779.344972 http://dx.doi.org/10.1145/344779.344972 ]
Chan T F, Shen J H. Mathematical models for local nontexture inpaintings[J]. SIAM Journal on Applied Mathematics, 2002, 62(3):1019-1043.
Chan T F, Shen J H. Nontexture inpainting by curvature-driven diffusion[J]. Journal of Visual Communication and Image Representation, 2001, 12(4):436-449.[DOI:10.1006/jvci.2001.0487]
Hui S Y. Study on local image reconstructing algorithm based on the static magnetic field[D]. Hangzhou: Hangzhou Dianzi University, 2016.
惠舒芸. 基于静磁场模型的图像局部重建算法研究[D]. 杭州: 杭州电子科技大学, 2016.
Ye X Y. Iris and face based multi-biometrics identification and fusion methods[D]. Hefei: University of Science and Technology of China, 2006.
叶学义. 基于虹膜和脸像的多生物特征身份识别及融合算法的研究[D]. 合肥: 中国科学技术大学, 2006.
Ye X Y, Qi Z Z, He Z W, et al. Reconstructing image local regions based on directional derivative of a field[J]. Journal of Image and Graphics, 2014, 19(7):998-1005.
叶学义, 齐珍珍, 何志伟, 等.图像场方向导数的局部区域重建[J].中国图象图形学报, 2014, 19(7):998-1005.[DOI:10.11834/jig.20140702]
Landau L D, Lifshitz E M, Holbrow C H. The classical theory of fields[J]. Physics Today, 1963, 16(6):72.[DOI:10.1063/1.3050989]
Yang H J. Methods of Mathematical Physics and Computer Simulation[M]. Beijing:Publishing House of Electronics Industry, 2005:31-54.
杨华军.数学物理方法与计算机仿真[M].北京:电子工业出版社, 2005:31-54.
Courant R, Hilbert D. Methods of mathematical physics[J]. Physics Today, 1954, 7(5):17.[DOI:10.1063/1.3061619]
Gimel'farb G. Modeling image textures by Gibbs random fields[J]. Pattern Recognition Letters, 1999, 20(11-13):1123-1132.[DOI:10.1016/S0167-8655(99)00079-3]
Wang J. Research on digital image inpainting technology[D]. Hangzhou: Hangzhou Dianzi University, 2012.
王靖. 数字图像修复技术研究[D]. 杭州: 杭州电子科技大学, 2012.
Duan H G, Wang J W. Image restoration based on differential approximation[J]. Information Technology, 2007, (5):25-27.
段汉根, 汪继文.基于微分近似的图像修复[J].信息技术, 2007, (5):25-27.[DOI:10.13274/j.cnki.hdzj.2007.05.007]
Lv H, Wang R G, Li Y, et al. A resolution-adaptive interpolation filter for video codec[C]//Proceedings of 2014 IEEE International Symposium on Circuits and Systems. Melbourne VIC, Australia: IEEE, 2014: 542-545. [ DOI: 10.1109/ISCAS.2014.6865192 http://dx.doi.org/10.1109/ISCAS.2014.6865192 ]
Michael D. Automated optical inspection apparatus using nearest neighbor interpolation: US, 6061467[P]. 2000-05-09.
Zhang X G. A new kind of super-resolution reconstruction algorithm based on the ICM and the bilinear interpolation[C]//Proceedings of 2008 International Seminar on Future BioMedical Information Engineering. Wuhan, Hubei, China: IEEE, 2008: 661-664. [ DOI: 10.1109/FBIE.2008.44 http://dx.doi.org/10.1109/FBIE.2008.44 ]
Poggio T P, Voorhees H, Yuille A. A regularized solution to edge detection[J]. Journal of Complexity, 1988, 4(2):106-123.[DOI:10.1016/0885-064X(88)90024-6]
相关作者
相关机构
京公网安备11010802024621