整合神经网络置乱图像的动态自反馈混沌系统图像加密
Dynamic self-feedback chaotic system image encryption based on neural network scrambling image
- 2018年23卷第3期 页码:346-361
收稿:2017-07-07,
修回:2017-9-14,
纸质出版:2018-03-16
DOI: 10.11834/jig.170464
移动端阅览

浏览全部资源
扫码关注微信
收稿:2017-07-07,
修回:2017-9-14,
纸质出版:2018-03-16
移动端阅览
目的
2
针对当前大多数数字图像加密算法多采用单一的混沌系统,且置乱方法基本只采用像素行列互换、Arnold变换、Baker变换、序列排序构造替换表等几类,提出一种新的整合神经网络置乱图像的动态自反馈混沌系统图像加密算法。
方法
2
该算法通过1维Logistic混沌、chebyshev混沌和自定义
m
(
$$x$$
)运算构造了一种动态自反馈混沌系统,通过频数检测、序列分布图、平衡度分析、相关性分析、Lyapunov指数验证了系统的随机性,并对其序列进行了均匀化处理,通过序列均匀性证明、序列分布图、序列期望和方差验证了均匀化效果。该算法从混沌序列中随机选取输入值和参数输入神经网络,采用每组神经网络输出值构造置乱矩阵进行初次全局置乱,再从bit位进行二次置乱;采用两组与明文相关的秘钥序列进行像素值替代扩散,使得明文到密文经过中间密文变化,增强了算法的安全性。
结果
2
通过计算机仿真和性能分析表明该加密算法体现了良好的密码学特征,从秘钥空间、秘钥敏感性、统计分析、信息熵、差分分析、相邻像素相关性分析各方面验证了其安全性,数据表明该算法秘钥空间达到了2
216
,信息熵为7.998 3,水平、垂直、对角方向相邻像素相关系数分别为-0.000 381、0.000 607、-0.000 309,
NPCR
值介于(0.995~80.996 6)之间,
UACI
值介于(0.333~0.338)之间。
结论
2
该算法可以实现良好的加密效果,在数据对比上优于超混沌系统图像加密、像素位置和bit位双重置乱加密等,可以被广泛应用在灰度图像加密中乃至扩展到彩色图像加密中,能够起到图像信息在网络传输、存储中的隐私保护作用。
Objective
2
Several commonalities can be observed among all image encryption algorithms
which are based on a chaotic system. Most secret key generating sources are for the single chaos system
but they lack high randomicity and uniformity. Scramblings only use pixel rank swap
Arnold transform
Baker transform
sequences structure substitution table
and other common methods. The entire encryption process involves one-pixel position scrambling and pixel replacement. This paper proposes a highly secure image encryption algorithm
that is
a dynamic self-feedback chaotic system image encryption algorithm that integrates a neural network scrambling image.
Method
2
The algorithm constructs a dynamic self-feedback chaotic system as the secret key generation source. The specific practice is to obtain output using the one-dimensional Logistic chaotic system and the Chebyshev chaotic system through a custom
m
(
$$x$$
) operation and attain an output value by one-dimensional Logistic chaotic. The formation of the chaotic system by self-feedback is composed of two dynamic subsystems connected in series. The stochastic system is proven by the data of the frequency of detection
sequence distribution
balance analysis
correlation analysis
and Lyapunov index. To achieve sequence homogenization
the processing sequence is continued using the uniform formula
and the homogenization effect is checked through the sequence of uniform proof
sequence distribution
sequence expectation
and variance verification. Second
the algorithm uses a new scrambling method
and neural network is introduced to generate the pixel position scrambling matrix by selecting a neural network input value. Parameters were derived from the dynamic feedback from a group of key sequences generated from a chaotic system. Neural network parameters and input values are changed in the process of Diego generation
and randomization is ensured. The first round is pixel position scrambling
and the second round is position scrambling
which transforms the plain image pixel value into a binary number. The secret key sequence and the corresponding pixel value have the same length. Eight small digital array stores are set through each key. The ranking information is stored by sorting the rearranged array binary number. The number of binary reordering is then converted to a decimal number. The scrambling process is thus completed. Finally
the pixel value substitution process calculates the relevant information of the plain image through the relevant information and the dynamic self-feedback chaotic system. Two groups with the plaintext secret key sequence are generated using a two-pixel group secret key sequence for the two rounds of value instead of the diffusion between the plaintext and ciphertext. A change by intermediate ciphertext has a nonlinear relationship with the complex and ciphertext plaintext
thereby greatly enhancing the security of the algorithm. The two-group key sequences add new key elements in the process of replacement and also expand the secret keyspace.
Result
2
Computer simulation and performance analysis show that the encryption algorithm has good cryptographic properties. Security is verified by the secret keyspace
key sensitivity
statistical analysis
information entropy
differences analysis
and correlation analysis of the adjacent pixels. The data show that the algorithm secret keyspace can reach 2
216
. Information entropy can reach 7.998 3. The vertical and diagonal direction of adjacent pixel correlation coefficients were -0.000 381
0.000 607
-0.000 309
NPCR
value (0.995~80.996 6)
and
UACI
value (0.333~0.338).
Conclusion
2
The algorithm can achieve a good encryption effect. The data are better than that of the hyper-chaotic system
double scrambling encryption of pixel position and a bit. The algorithm can be widely used in image encryption and even extended to color image encryption areas. It plays a good role in protecting the privacy of image information transmission and storage in networks.
Wang Y J, Yang F, Kang S Q, et al. An image encryption scheme using mixed high dimensional chaotic system combined with Fast Fourier Transform[C]//Proceedings of the 12th IEEE International Conference on Electronic Measurement & Instruments. Qingdao, China: IEEE, 2015: 1279-1283. [ DOI:10.1109/ICEMI.2015.7494519 http://dx.doi.org/10.1109/ICEMI.2015.7494519 ]
Yang S J, Min L Q, Chen E. A 4-dimensional discrete chaotic system and application in image encryption with avalanche effects[C]//Proceedings of 2015 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery. Xi'an, China: IEEE, 2015: 37-43. [ DOI:10.1109/CyberC.2015.70 http://dx.doi.org/10.1109/CyberC.2015.70 ]
Shruthi K M, Sheela S, Sathyanarayana S V. Image encryption scheme with key sequences based on Chaotic functions[C]//Proceedings of 2014 International Conference on Contemporary Computing and Informatics. Mysore, India: IEEE, 2014: 823-827. [ DOI:10.1109/IC3I.2014.7019667 http://dx.doi.org/10.1109/IC3I.2014.7019667 ]
Elabady N F, Abdalkader H M, Moussa M I, et al. Image encryption based on new one-dimensional chaotic map[C]//Proceedings of 2014 International Conference on Engineering and Technology. Cairo, Egypt: IEEE, 2014: 1-6. [ DOI:10.1109/ICEngTechnol.2014.7016811 http://dx.doi.org/10.1109/ICEngTechnol.2014.7016811 ]
Min L Q, Hao L J, Han D D, et al. An avalanche block encryption scheme and chaotic block pseudorandom number generator with application in the image encryption[C]//Proceedings of the 12th International Conference on Signal Processing. Hangzhou, China: IEEE, 2014: 1843-1850. [ DOI:10.1109/ICOSP.2014.7015311 http://dx.doi.org/10.1109/ICOSP.2014.7015311 ]
Xu Y, Zhang S W. Encryption algorithm of image blocking and double adaptive diffusion with Arnold mapping[J]. Journal of Image and Graphics, 2015, 20(6):740-748.
徐亚, 张绍武.基于Arnold映射的分块双层自适应扩散图像加密算法[J].中国图象图形学报, 2015, 20(6):740-748.[DOI:10.11834/jig.20150602]
Guo J S, Zhang F. An equivalent key attack on an image cryptosystem[J]. Acta Electronica Sinica, 2010, 38(4):781-785.
郭建胜, 张锋.一种图像加密算法的等效密钥攻击方案[J].电子学报, 2010, 38(4):781-785.
Wang J, Jiang G P. Cryptanalysis of a hyper-chaotic image encryption algorithm and its improved version[J]. Acta Physica Sinica, 2011, 60(6):060503.
王静, 蒋国平.一种超混沌图像加密算法的安全性分析及其改进[J].物理学报, 2011, 60(6):060503.
Song Y L, Song J, Qu J F. A secure image encryption algorithm based on multiple one-dimensional chaotic systems[C]//Proceedings of the 2nd IEEE International Conference on Computer and Communications. Chengdu, China: IEEE, 2016: 584-588. [ DOI:10.1109/CompComm.2016.7924768 http://dx.doi.org/10.1109/CompComm.2016.7924768 ]
Zhang G J, Liu Q. A novel image encryption method based on total shuffling scheme[J]. Optics Communications, 2011, 284(12):2775-2780.[DOI:10.1016/j.optcom.2011.02.039]
Zahmoul R, Zaied M. Toward new family beta maps for chaotic image encryption[C]//Proceedings of 2016 IEEE International Conference on Systems, Man, and Cybernetics. Budapest, Hungary: IEEE, 2016: 004052-004057. [ DOI:10.1109/SMC.2016.7844867 http://dx.doi.org/10.1109/SMC.2016.7844867 ]
Liao Q N, Lu S D, Sun X B. Digital image encryption algorithm by combining hyper chaotic sequences and shift cipher[J]. Journal of Chinese Computer Systems, 2015, 36(2):332-337.
廖琪男, 卢守东, 孙宪波.结合超混沌序列和移位密码的数字图像加密算法[J].小型微型计算机系统, 2015, 36(2):332-337.
Sharma P K, Ahmad M, Khan P M. Cryptanalysis of image encryption algorithm based on pixel shuffling and chaotic s-box transformation[C]//The 2nd International Symposium on Security in Computing and Communication. Delhi, India: Springer, 2014: 173-181. [ DOI:10.1007/978-3-662-44966-0_16 http://dx.doi.org/10.1007/978-3-662-44966-0_16 ]
Zhu C X, Liao C L, Deng X H. Breaking and improving an image encryption scheme based on total shuffling scheme[J]. Nonlinear Dynamics, 2013, 71(1-2):25-34.[DOI:10.1007/s11071-012-0639-0]
Teng L, Wang X Y. A bit-level image encryption algorithm based on spatiotemporal chaotic system and self-adaptive[J]. Optics Communications, 2012, 285(20):4048-4054.[DOI:10.1016/j.optcom.2012.06.004]
Li C Q, Liu Y S, Zhang L Y, etal. Cryptanalyzing aclassof image encryption schemes based on Chinese remainder theorem[J]. Signal Processing:Image Communication, 2014, 29(8):914-920.[DOI:10.1016/j.image.2014.06.011]
Nanjing. Cryptanalysis of a hyper-chaotic image encryption algorithm and its improved version[J]. Acta Physica Sinica, 2011, 60(6):868-870.
Deng X H, Liao C L, Zhu C X, et al. Image encryption algorithms based on chaos through dual scrambling of pixel position and bit[J]. Journal on Communications, 2014, 35(3):216-223.
邓晓衡, 廖春龙, 朱从旭, 等.像素位置与比特双重置乱的图像混沌加密算法[J].通信学报, 2014, 35(3):216-223.[DOI:10.3969/j.issn.1000-436x.2014.03.025]
Cao G H, Hu K, Tong W. Image scrambling based on Logistic uniform distribution[J]. Acta Physica Sinica, 2011, 60(11):110508.
曹光辉, 胡凯, 佟维.基于Logistic均匀分布图像置乱方法[J].物理学报, 2011, 60(11):110508.[DOI:10.7498/aps.60.110508]
Li J S, Xing Y B, Qu C Y, et al. An image encryption method based on tent and Lorenz chaotic systems[C]//Proceedings of the 6th IEEE International Conference on Software Engineering and Service Science. Beijing, China: IEEE, 2015: 582-586. [ DOI:10.1109/ICSESS.2015.7339125 http://dx.doi.org/10.1109/ICSESS.2015.7339125 ]
Lin Q, Wang Y J, Wang J. The image encryption scheme with optional dynamic state variables based on hyperchaotic system[J]. Scientia Sinica Technologica, 2016, 46(9):910-918.
林青, 王延江, 王珺.基于超混沌系统的图像加密算法[J].中国科学:技术科学, 2016, 46(9):910-918.[DOI:10.1360/N092016-00115]
Sheng S Y, Wu X H. A novel bit-level image encryption scheme using hyper-chaotic systems[C]//Proceedings of the 10th International Conference on Fuzzy Systems and Knowledge Discovery. Shenyang, China: IEEE, 2013: 1015-1019. [ DOI:10.1109/FSKD.2013.6816344 http://dx.doi.org/10.1109/FSKD.2013.6816344 ]
相关作者
相关机构
京公网安备11010802024621