数字视频区域篡改的检测与定位
Detection and localization of digital video regional tampering
- 2018年23卷第6期 页码:779-791
收稿:2017-08-17,
修回:2018-1-2,
纸质出版:2018-06-16
DOI: 10.11834/jig.170453
移动端阅览

浏览全部资源
扫码关注微信
收稿:2017-08-17,
修回:2018-1-2,
纸质出版:2018-06-16
移动端阅览
目的
2
数字视频区域篡改是指视频帧图像的某个关键区域被覆盖或被替换,经过图像编辑和修补之后,该关键区域的修改痕迹很难通过肉眼来分辨。视频图像的关键区域承载了视频序列的关键语义信息。如果该篡改操作属于恶意的伪造行为,将产生非常严重的影响和后果。因此,视频区域篡改的检测与定位研究具有重要的研究价值和应用前景。
方法
2
数字图像的复制粘贴篡改检测已经取得较大的研究进展,相关研究成果也很多。但是,数字视频区域篡改的检测与定位不能直接采用数字图像的复制—粘贴篡改取证算法。数字视频区域篡改检测与定位是数字视频被动取证研究领域中的一个新兴的研究方向,近年来越来越多的学者在该领域开展研究工作。目前,数字视频的区域篡改检测与定位研究还缺少完善的理论支撑和通用的检测与定位算法。在广泛调研最近几年的最新研究成果的基础上,对数字视频区域篡改的被动取证概念及重要性进行了介绍,将现有的数字视频区域篡改被动取证算法分为4类:基于噪声模式的算法、基于像素相关性的算法、基于视频内容特征的算法和基于抽象统计特征的算法。然后,对这些区域篡改检测与定位的算法进行对比分析,并介绍现有的视频区域篡改软件和算法,以及篡改检测算法的测试数据库。最后,对本研究领域存在的问题和挑战进行总结,并对未来的研究趋势进行展望。
结果
2
选取了20篇文献中的18种算法,分别介绍每种算法的算法原理,并对这些算法进行对比分析。大部分的算法都宣称可以检测并定位出篡改可疑区域,但是检测和定位的精度、计算复杂度都各有差异。其中,基于时空域的像素相关性分析的算法具有较好的检测和定位效果,并且支持运动背景视频中的运动目标删除篡改检测和定位。基于光流平滑性异常的算法和基于运动目标检测的算法都是基于公开的视频篡改测试库进行比较测试的,两种算法都具有较好的检测和定位效果。基于隐写分析特征提取的集成分类算法虽然只能实现时域上的篡改定位,不能实现更精细的空域篡改定位,但是该算法为基于机器学习的大规模视频篡改取证研究提供了新思路和可能的发展方向,具有较大的指导意义。
结论
2
由于视频编码压缩引入噪声,以及视频区域篡改软件工具和技术的改进,视频区域篡改检测和定位仍是一个极具挑战的课题。未来几年,基于视频内容特征和抽象统计特征的视频区域篡改检测和定位算法,有可能结合深度学习算法,得到进一步的研究和发展;相关的理论算法、系统模型和评价标准等研究成果将逐步完善。
Objective
2
Digital video regional tampering is a technology that can overwrite or replace a critical area of a video frame. After image inpainting
the modified traces of the critical area cannot be directly identified by human eyes. The critical region of the video frame carries the key semantic information of the video sequence. If the video regional tampering is a malicious behavior of the attacker
then it will have a serious impact. Therefore
detection and localization of video regional tampering have significant research value and application prospects.
Method
2
The detection of digital image copy-move tampering has been successful and many methods have been proposed. However
the detection and localization of digital video regional tampering cannot directly use tampering detection algorithms of digital images. Video tampering detection and localization are new research topics in digital video passive forensics. In recent years
numerous scholars have focused on the research on video tampering detection. However
no systematic theoretical framework or universal algorithm for regional tampering detection and location of digital videos is available at present. The concept and importance of digital video regional tampering forensics are first introduced based on extensive studies and achievements reported on the existing literature. Then
the current passive forensic algorithms for video regional tampering are divided into the following four categories: based on pattern noise
based on pixel correlation
based on video codec features
and based on statistical features. These passive forensic algorithms are discussed and compared
and video regional tampering tools and video forensic data sets are introduced. Finally
we summarize the problems and challenges and propose possible future research trends in video regional tampering detection and location.
Result
2
In this study
we select 18 algorithms in 20 works to introduce the methods of each algorithm and compare the algorithms individually. Most of the algorithms claim that they can detect and locate tampering region
but the accuracy and computational complexity of detection and localization are different. Among these methods
the algorithm based on pixel spatial-temporal coherence analysis has achieved good detection and localization performance in moving background video sequences. The algorithm based on the optical flow smoothing anomaly and the algorithm based on the moving object detection have obtained good detection performance on the public video forgery dataset. The ensemble classification algorithm based on steganalysis feature extraction is a tampering localization method in the temporal domain based on machine learning and steganalysis feature extraction. Although this method cannot achieve spatial tampering localization
it develops a new research direction based on machine learning for large-scale video tampering detection.
Conclusion
2
Video regional tampering detection and localization are challenging research topics due to the noise introduced by video compression and the improvement of video tampering software tools. In the next several years
the video regional tampering detection and localization algorithm based on video content feature and abstract statistical characteristics may be further studied and developed in combination with deep learning networks. Furthermore
theoretical framework
system model
and evaluation standard will be gradually improved.
Feng C H, Xu Z Q, Zheng X H, et al. Digital visual media forensics[J]. Journal on Communications, 2014, 35(4):155-165.
冯春晖, 徐正全, 郑兴辉, 等.数字可视媒体取证[J].通信学报, 2014, 35(4):155-165. [DOI:10.3969/j.issn.1000-436x.2014.04.018]
Yang R, Luo W Q, Huang J W. Multimedia forensics[J]. Scientia Sinica:Informationis, 2013, 43(12):1654-1672.
杨锐, 骆伟祺, 黄继武.多媒体取证[J].中国科学:信息科学, 2013, 43(12):1654-1672. [DOI:10.1360/N112013-00059
Wang W, Zeng F, Tang M, et al. Survey on anti-forensics techniques of digital image[J]. Journal of Image and Graphics, 2016, 21(12):1536-1573.
王伟, 曾凤, 汤敏, 等.数字图像反取证技术综述[J].中国图象图形学报, 2016, 21(12):1563-1573. [DOI:10.11834/jig.20161201]
Chen W B, Yang G B, Chen R C, et al. Digital video passive forensics for its authenticity and source[J]. Journal on Communications, 2011, 32(6):177-183.
陈威兵, 杨高波, 陈日超, 等.数字视频真实性和来源的被动取证[J].通信学报, 2011, 32(6):177-183. [DOI:10.3969/j.issn.1000-436X.2011.06.024]
Sitara K, Mehtre B M. Digital video tampering detection:An overview of passive techniques[J]. Digital Investigation, 2016, 18:8-22.[DOI:10.1016/j.diin.2016.06.003]
Wahab A W A, Bagiwa M A, Idris M Y I, et al. Passive video forgery detection techniques: a survey[C]//Proceedings of the 10th International Conference on Information Assurance and Security. Okinawa, Japan: IEEE, 2014: 29-34. [ DOI:10.1109/ISIAS.2014.7064616 http://dx.doi.org/10.1109/ISIAS.2014.7064616 ]
Milani S, Fontani M, Bestagini P, et al. An overview on video forensics[J]. APSIPA Transactions on Signal and Information Processing, 2012, 1(e2):1-18.[DOI:10.1017/ATSIP.2012.2]
Cao G, Zhao Y, Ni R R. Multimedia content authentication[J]. China Computer Federation Communications, 2011, 7(2):38-44.
曹刚, 赵耀, 倪蓉蓉.多媒体内容认证[J].中国计算机学会通讯, 2011, 7(2):38-44.
Feng C H, Xu Z Q, Jia S, et al. Motion-adaptive frame deletion detection for digital video forensics[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(12):2543-2554.[DOI:10.1109/TCSVT.2016.2593612]
Xia M, Yang G B, Li L D, et al. Detecting video frame rate up-conversion based on frame-level analysis of average texture variation[J]. Multimedia Tools and Applications, 2017, 76(6):8399-8421.[DOI:10.1007/s11042-016-3468-1]
Yao Y X, Yang G B, Sun X M, et al. Detecting video frame-rate up-conversion based on periodic properties of edge-intensity[J]. Journal of Information Security and Applications, 2016, 26:39-50.[DOI:10.1016/j.jisa.2015.12.001]
Ding X L, Yang G B, Li R, et al. Identification of motion-compensated frame rate up-conversion based on residual signal[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017.[DOI:10.1109/TCSVT.2017.2676162]
He P S, Jiang X H, Sun T F, et al. Double compression detection based on local motion vector field analysis in static-background videos[J]. Journal of Visual Communication and Image Representation, 2016, 35:55-66.[DOI:10.1016/j.jvcir.2015.11.014]
Qureshi M A, Deriche M. A bibliography of pixel-based blind image forgery detection techniques[J]. Signal Processing:Image Communication, 2015, 39:46-74.[DOI:10.1016/j.image.2015.08.008]
Al-Qershi O M, Khoo B E. Passive detection of copy-move forgery in digital images:State-of-the-art[J]. Forensic Science International, 2013, 231(1-3):284-295.[DOI:10.1016/j.forsciint.2013.05.027]
Birajdar G K, Mankar V H. Digital image forgery detection using passive techniques:A survey[J]. Digital Investigation, 2013, 10(3):226-245.[DOI:10.1016/j.diin.2013.04.007]
Hsu C C, Hung T Y, Lin C W, et al. Video forgery detection using correlation of noise residue[C]//Proceedings of the 10th Workshop on Multimedia Signal Processing. Cairns, Qld, Australia: IEEE, 2008: 170-174. [ DOI:10.1109/MMSP.2008.4665069 http://dx.doi.org/10.1109/MMSP.2008.4665069 ]
Kobayashi M, Okabe T, Sato Y. Detecting forgery from static-scene video based on inconsistency in noise level functions[J]. IEEE Transactions on Information Forensics and Security, 2010, 5(4):883-892.[DOI:10.1109/TIFS.2010.2074194]
Chetty G, Biswas M, Singh R. Digital video tamper detection based on multimodal fusion of residue features[C]//Proceedings of the 4th International Conference on Network and System Security. Melbourne, VIC, Australia: IEEE, 2010: 606-613. [ DOI:10.1109/NSS.2010.8 http://dx.doi.org/10.1109/NSS.2010.8 ]
Goodwin J, Chetty G. Blind video tamper detection based on fusion of source features[C]//Proceedings of 2011 International Conference on Digital Image Computing: Techniques and Applications. Noosa, QLD, Australia: IEEE, 2011: 608-613. [ DOI:10.1109/DICTA.2011.108 http://dx.doi.org/10.1109/DICTA.2011.108 ]
Wang W H, Farid H. Exposing digital forgeries in video by detecting duplication[C]//Proceedings of the 9th workshop on Multimedia & security. Dallas, Texas, USA: ACM, 2007: 35-42. [ DOI:10.1145/1288869.1288876 http://dx.doi.org/10.1145/1288869.1288876 ]
Wang W H, Farid H. Exposing digital forgeries in interlaced and deinterlaced video[J]. IEEE Transactions on Information Forensics and Security, 2007, 2(3):438-449.[DOI:10.1109/TIFS.2007.902661]
Bestagini P, Milani S, Tagliasacchi M, et al. Local tampering detection in video sequences[C]//Proceedings of the 15th International Workshop on Multimedia Signal Processing. Pula, Italy: IEEE, 2013: 488-493. [ DOI:10.1109/MMSP.2013.6659337 http://dx.doi.org/10.1109/MMSP.2013.6659337 ]
Lin C S, Tsay J J. A passive approach for effective detection and localization of region-level video forgery with spatio-temporal coherence analysis[J]. Digital Investigation, 2014, 11(2):120-140.[DOI:10.1016/j.diin.2014.03.016]
Patwardhan K A, Sapiro G, Bertalmio M. Video inpainting under constrained camera motion[J]. IEEE Transactions on Image Processing, 2007, 16(2):545-553.[DOI:10.1109/TIP.2006.888343]
Criminisi A, Perez P, Toyama K. Region filling and object removal by exemplar-based image inpainting[J]. IEEE Transactions on Image Processing, 2004, 13(9):1200-1212.[DOI:10.1109/TIP.2004.833105]
Zhang J, Su Y T, Zhang M Y. Exposing digital video forgery by ghost shadow artifact[C]//Proceedings of the First ACM workshop on Multimedia in forensics. Beijing, China: ACM, 2009: 49-54. [ DOI:10.1145/1631081.1631093 http://dx.doi.org/10.1145/1631081.1631093 ]
Li L D, Wang X W, Zhang W, et al. Detecting removed object from video with stationary background[C] //Proceedings of the 11th International Workshop on Digital Forensics and Watermarking 2012. Shanghai, China: Springer, 2013: 242-252. [ DOI:10.1007/978-3-642-40099-5_20 http://dx.doi.org/10.1007/978-3-642-40099-5_20 ]
Bidokhti A, Ghaemmaghami S. Detection of regional copy/move forgery in MPEG videos using optical flow[C]//Proceedings of 2015 International Symposium on Artificial Intelligence and Signal Processing. Mashhad, Iran: IEEE, 2015: 13-17. [ DOI:10.1109/AISP.2015.7123529 http://dx.doi.org/10.1109/AISP.2015.7123529 ]
Wang W, Jiang X H, Wang S L, et al. Identifying video forgery process using Optical Flow[C]//Proceedings of the 12th International Workshop on Digital-Forensics and Watermarking. Auckland, New Zealand: Springer, 2013: 244-257. [ DOI:10.1007/978-3-662-43886-2_18 http://dx.doi.org/10.1007/978-3-662-43886-2_18 ]
Li Q, Wang R D, Xu D W. Detection to video moving object deletion based on video inpainting[J]. Journal of Optoelectronics·Laser, 2016, 27(2):182-190.
李倩, 王让定, 徐达文.基于视频修复的运动目标删除篡改行为的检测算法[J].光电子·激光, 2016, 27(2):182-190. [DOI:10.16136/j.joel.2016.02.0287]
Zhang L B, Sun T F, Jiang X H. Moving targets copy-move forgery detection in video sequences[J]. Journal of Shanghai Jiaotong University, 2015, 49(2):196-201, 208.
张璐波, 孙锬锋, 蒋兴浩.视频帧内运动目标复制-粘贴篡改检测算法[J].上海交通大学学报, 2015, 49(2):196-201, 208.
Chen R C, Yang G B, Zhu N B. Detection of object-based manipulation by the statistical features of object contour[J]. Forensic Science International, 2014, 236:164-169.[DOI:10.1016/j.forsciint.2013.12.022]
Pandey R C, Singh S K, Shukla K K. Passive copy-move forgery detection in videos[C]//Proceedings of 2014 International Conference on Computer and Communication Technology. Allahabad, India: IEEE, 2014: 301-306. [ DOI:10.1109/ICCCT.2014.7001509 http://dx.doi.org/10.1109/ICCCT.2014.7001509 ]
Su L C, Huang T Q, Zheng M K. A copy-paste video tamper detection method based on features extracting and tracking[J]. Journal of Fuzhou University:Natural Science Edition, 2015, 43(4):450-455.
苏立超, 黄添强, 郑明魁.一种基于特征提取与追踪的视频复制粘贴篡改检测方法[J].福州大学学报:自然科学版, 2015, 43(4):450-455. [DOI:10.7631/issn.1000-2243.2015.04.0450]
Mathai M, Rajan D, Emmanuel S. Video forgery detection and localization using normalized cross-correlation of moment features[C]//Proceedings of 2016 IEEE Southwest Symposium on Image Analysis and Interpretation. Santa Fe, NM, USA: IEEE, 2016: 149-152. [ DOI:10.1109/SSIAI.2016.7459197 http://dx.doi.org/10.1109/SSIAI.2016.7459197 ]
Liu Y Q, Huang T Q. Digital video forgeries detection and tamper areas location based on temporal and spatial energy suspicious degree[J]. Journal of Nanjing University:Natural Sciences, 2014, 50(1):61-71.
刘雨青, 黄添强.基于时空域能量可疑度的视频篡改检测与篡改区域定位[J].南京大学学报:自然科学, 2014, 50(1):61-71. [DOI:10.13232/j.cnki.jnju.2014.01.010]
Chen S D, Tan S Q, Li B, et al. Automatic detection of object-based forgery in advanced video[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(11):2138-2151.[DOI:10.1109/TCSVT.2015.2473436]
Tan S Q, Chen S D, Li B. GOP based automatic detection of object-based forgery in advanced video[C]//Proceedings of 2015 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference. Hong Kong, China: IEEE, 2015: 719-722. [ DOI:10.1109/APSIPA.2015.7415366 http://dx.doi.org/10.1109/APSIPA.2015.7415366 ]
Newson A, Almansa A, Fradet M, et al. Video inpainting of complex scenes[J]. SIAM Journal on Imaging Sciences, 2014, 7(4):1993-2019.[DOI:10.1137/140954933]
Ardizzone E, Mazzola G. A tool to support the creation of datasets of tampered videos[C]//Proceedings of the 18th International Conference on Image Analysis and Processing-ICIAP 2015. Genoa, ltaly: Springer, 2015: 665-675. [ DOI:10.1007/978-3-319-23234-8_61 http://dx.doi.org/10.1007/978-3-319-23234-8_61 ]
Ebdelli M, Le Meur O, Guillemot C. Video inpainting with short-term windows:application to object removal and error concealment[J]. IEEE Transactions on Image Processing, 2015, 24(10):3034-3047.[DOI:10.1109/TIP.2015.2437193]
Qadir G, Yahaya S, Ho A T S. Surrey university library for forensic analysis (SULFA) of video content[C]//Proceedings of 2012 IET Conference on Image Processing (IPR 2012). London, UK: IEEE, 2012: 1-6. DOI:10.1049/cp.2012.0422 http://dx.doi.org/10.1049/cp.2012.0422
SULFA dataset[EB/OL]. 2012[2017-08-15] . http://sulfa.cs.surrey.ac.uk/ http://sulfa.cs.surrey.ac.uk/ .
REWIND dataset[EB/OL] . 2013[2017-08-15]. http://sulfa.cs.surrey.ac.uk/forged_1.php http://sulfa.cs.surrey.ac.uk/forged_1.php .
DICGIM dataset[EB/OL]. 2015[2017-08-15] . http://www.dicgim.unipa.it/cvip/ http://www.dicgim.unipa.it/cvip/ .
Ren K. Privacy-preserving image processing in cloud computing[J]. Chinese Journal of Network and Information Security, 2016, 2(1):12-17.
任奎.云计算中图像数据处理的隐私保护[J].网络与信息安全学报, 2016, 2(1):12-17. [DOI:10.11959/j.issn.2096-109x.2016.00020]
Feng B W, Wang J, Lu W. Research on outsourcing of digital image forensics based on privacy preserving[J]. Chinese Journal of Network and Information Security, 2016, 2(8):23-31.
冯丙文, 翁健, 卢伟.基于隐私保护的数字图像取证外包技术框架研究[J].网络与信息安全学报, 2016, 2(8):23-31. [DOI:10.11959/j.issn.2096-109x.2016.00085]
相关文章
相关作者
相关机构
京公网安备11010802024621