多先验特征与综合对比度的图像显著性检测
Saliency detection based on multiple priorities and comprehensive contrast
- 2018年23卷第2期 页码:239-248
收稿:2017-07-18,
修回:2017-10-13,
纸质出版:2018-02-16
DOI: 10.11834/jig.170381
移动端阅览

浏览全部资源
扫码关注微信
收稿:2017-07-18,
修回:2017-10-13,
纸质出版:2018-02-16
移动端阅览
目的
2
图像的显著性检测在计算机视觉中应用非常广泛,现有的方法通常在复杂背景区域下表现不佳,由于显著性检测的低层特征并不可靠,同时单一的特征也很难得到高质量的显著图。提出了一种通过增加特征的多样性来实现显著性检测的方法。
方法
2
在高层先验知识的基础上,对背景先验特征和中心先验特征重新进行了定义,并考虑人眼视觉一般会对暖色调更为关注,从而加入颜色先验。另外在图像低层特征上使用目前较为流行的全局对比度和局部对比度特征,在特征融合时针对不同情况分别采取线性和非线性的一种新的融合策略,得到高质量的显著图。
结果
2
在MSRA-1000和DUT-OMRON两个公开数据库进行对比验证,实验结果表明,基于多先验特征与综合对比度的图像显著性检测算法具有较高的查准率、召回率和F-measure值,相较于RBD算法均提高了1.5%以上,综合性能均优于目前的10种主流算法。
结论
2
相较于基于低层特征和单一先验特征的算法,本文算法充分利用了图像信息,能在突出全局对比度的同时也保留较多的局部信息,达到均匀突出显著性区域的效果,有效地抑制复杂的背景区域,得到更加符合视觉感知的显著图。
Objective
2
Saliency detection is widely used in computer vision. When dealing with simple images
the bottom-up low-level features can achieve good detection results. As for images with complex background
the existing methods do not perform well and many regions of background could also be detected
and since the low-level features of saliency detection are not so reliable. At the same time
a single feature is also difficult to get high-quality saliency map. Hence
more salient factors are need to be integrated to solve it. This paper proposes a method to achieve saliency detection by increasing the diversity of features.
Method
2
A new consistency method base on the standard structure of the cognitive vision model. On the basis of high-level prior knowledge
the background prior characteristics and the center prior characteristics are redefined. By combining the theory of boundary prior and merging the spatial and color information get background prior saliency map. Then
according to the mechanism of human visual attention
taking the center of the background prior map as the central position of the salient region
and then apply the center prior
get the center prior saliency map. And consider the human eye vision to pay more attention to the warm color
while the warm tone has an effect on the image saliency
thus adding color prior. The local contrast method is better for the detailed texture of the image
but the integrity is not enough
the saliency map is generally dark. The contrast between the salient region and the background region is not enough
and it does not highlight the overall sense of the saliency objects. Global contrast can better show a large saliency target
but the details of the edge of the image is not good enough
at the same time there are still many unrelated interference pixels in the background region. Therefore
the more popular global contrast and local contrast characteristics are used in the low-level feature of the image
considering the overall degree of difference and the edge and contour information of the object
the global contrast saliency map and the local contrast saliency map are obtained. Finally
a new fusion strategy with linear and nonlinear are adopted to different situations in the feature fusion
to obtain high quality saliency map.
Result
2
The method of saliency detection based on multiple priorities and comprehensive contrast are conducted on MSRA-1000 and DUT-OMRON benchmark datasets. Experimental results show that compared with 10 state-of-the-art methods
the proposed method reaches higher precision
recall
and F-measure
which compared with RBD algorithm are improved by more than 1.5% and the comprehensive performance is better than any of the compared methods.
Conclusion
2
In contrast to the method based on the low-level features and a single prior
the proposed method based on Multiple Priorities and Comprehensive Contrast can extract more minute features of the input image.The saliency maps not only show global contrast but also have highly detailed information.The proposed method can uniformly highlight the salient region and effectively suppress the complex background area. The result is more in line with visual perception.
Liu Z W, Zhou D A, Lin J Y. Image segmentation based on saliency detection[J]. Computer Engineering&Science, 2016, 38(1):144-147.
刘志伟, 周东傲, 林嘉宇.基于图像显著性检测的图像分割[J].计算机工程与科学, 2016, 38(1):144-147. [DOI:10.3969/j.issn.1007-130X.2016.01.024]
Fei C. Research of image fusion based on intelligence optimization and visual saliency[D]. Chengdu: University of Electronic Science and Technology of China, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10614-1015712138.htm .
费春. 基于智能优化和视觉显著性的图像融合研究[D]. 成都: 电子科技大学, 2015.
Cao H J. The research of image retrieval technology based on salient region and feature fusion[D]. Changchun: Jilin University, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10183-1015588285.htm .
曹洪瑾. 基于显著区域和特征融合的图像检索技术研究[D]. 长春: 吉林大学, 2015.
Shehnaz M, Naveen N. An object recognition algorithm with structure-guided saliency detection and SVM classifier[C]//Proceedings of 2015 International Conference on Power, Instrumentation, Control and Computing. Thrissur, India: IEEE, 2015: 1-4. [ DOI:10.1109/PICC.2015.7455804 http://dx.doi.org/10.1109/PICC.2015.7455804 ]
Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11):1254-1259.[DOI:10.1109/34.730558]
Ma Y F, Zhang H J. Contrast-based image attention analysis by using fuzzy growing[C]//Proceedings of the Eleventh ACM International Conference on Multimedia. Berkeley, CA, USA: ACM, 2003: 374-381. [ DOI:10.1145/957013.957094 http://dx.doi.org/10.1145/957013.957094 ]
Schölkopf B, Platt J, Hofmann T. Graph-based visual saliency[C]//Schölkopf B, Platt J, Hofmann T. Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2007, 19: 545-552.
Achanta R, Hemami S, Estrada F, et al. Frequency-tuned salient region detection[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA: IEEE, 2009: 1597-1604. [ DOI:10.1109/CVPR.2009.5206596 http://dx.doi.org/10.1109/CVPR.2009.5206596 ]
Achanta R, Süsstrunk S. Saliency detection using maximum symmetric surround[C]//Proceedings of the 17th IEEE International Conference on Image Processing. Hong Kong, China: IEEE, 2010: 2653-2656. [ DOI:10.1109/ICIP.2010.5652636 http://dx.doi.org/10.1109/ICIP.2010.5652636 ]
Cheng M M, Zhang G X, Mitra N J, et al. Global contrast basedsalient region detection[C]//Proceedings of 2011 IEEE Conference onComputer Vision and Pattern Recognition. Colorado Springs, CO, USA: IEEE, 2011: 409-416. [ DOI:10.1109/CVPR.2011.5995344 http://dx.doi.org/10.1109/CVPR.2011.5995344 ]
Wei Y C, Wen F, Zhu W J, et al. Geodesic saliency using background priors[C]//Proceedings of the 12th European Conference on Computer Vision. Florence, Italy: Springer, 2012: 29-42. [ DOI:10.1007/978-3-642-33712-3_3 http://dx.doi.org/10.1007/978-3-642-33712-3_3 ]
Yang C, Zhang L H, Lu H C, et al. Saliency detection via graph-based manifold ranking[C]//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA: IEEE, 2013: 3166-3173. [ DOI:10.1109/CVPR.2013.407 http://dx.doi.org/10.1109/CVPR.2013.407 ]
Jiang H Z, Wang J D, Yuan Z J, et al. Salient object detection: a discriminative regional feature integration approach[C]//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA: IEEE, 2013: 2083-2090. [ DOI:10.1109/CVPR.2013.271 http://dx.doi.org/10.1109/CVPR.2013.271 ]
Shen X H, Wu Y. A unified approach to salient object detection via low rank matrix recovery[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA: IEEE, 2012: 853-860. [ DOI:10.1109/CVPR.2012.6247758 http://dx.doi.org/10.1109/CVPR.2012.6247758 ]
Jiang H Z, Wang J D, Yuan Z J, et al. Automatic salient object segmentation based on context and shape prior[C]//Proceedings of British Machine Vision Conference. Dundee, Scotland: BMVA Press, 2011. [ DOI:10.5244/C.25.110 http://dx.doi.org/10.5244/C.25.110 ]
Yang J M, Yang M H. Top-down visual saliency via joint CRF and dictionary learning[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA: IEEE, 2012: 2296-2303.
Treisman A M, Gelade G. A feature-integration theory of attention[J]. Cognitive Psychology, 1980, 12(1):97-136.[DOI:10.1016/0010-0285(80)90005-5]
Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11):2274-2282.[DOI:10.1109/TPAMI.2012.120]
Wang J P, Lu H C, Li X H, et al. Saliency detection via background and foreground seed selection[J]. Neurocomputing, 2015, 152:359-368.
Zhang J, Wang M, Zhang S P, et al. Spatiochromatic context modeling for color saliency analysis[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(6):1177-1189.
Goferman S, Zelnik-Manor L, Tal A. Context-aware saliency detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10):1915-1926.[DOI:10.1109/TPAMI.2011.272]
Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1):62-66.[DOI:10.1109/TSMC.1979.4310076]
Zhai Y, Shah M. Visual attention detection in video sequences using spatio temporal cues[C]//Proceedings of the 14th ACM International Conference on Multimedia. Santa Barbara, CA, USA: ACM, 2006: 815-824. [ DOI:10.1145/1180639.1180824 http://dx.doi.org/10.1145/1180639.1180824 ]
PerazziF, KrähenbühlP, Pritch Y, et al. Saliency filters: contrast based filtering for salient region detection[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA: IEEE, 2012: 733-740. [ DOI:10.1109/CVPR.2012.6247743 http://dx.doi.org/10.1109/CVPR.2012.6247743 ]
Zhu W J, Liang S, Wei Y C, et al. Saliency optimization from robust background detection[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA: IEEE, 2014: 2814-2821. [ DOI:10.1109/CVPR.2014.360 http://dx.doi.org/10.1109/CVPR.2014.360 ]
Li Y Y, Xu Y L, Ma S P, et al. Saliency detection based on deep convolutional neural network[J]. Journal of Image and Graphics, 2016, 21(1):53-59.
李岳云, 许悦雷, 马时平, 等.深度卷积神经网络的显著性检测[J].中国图象图形学报, 2016, 21(1):53-59. [DOI:10.11834/jig.20160107]
Burrows M, Wheeler D J. A block-sorting lossless data compression algorithm[R]. Palo Alto, California: Systems Research Center, 1994.
相关作者
相关机构
京公网安备11010802024621