融合双特征图信息的图像显著性检测方法
Image saliency detection method based on a pair of feature maps
- 2018年23卷第4期 页码:583-594
收稿:2017-07-11,
修回:2017-9-5,
纸质出版:2018-04-16
DOI: 10.11834/jig.170367
移动端阅览

浏览全部资源
扫码关注微信
收稿:2017-07-11,
修回:2017-9-5,
纸质出版:2018-04-16
移动端阅览
目的
2
图像的显著性检测是将图像中最重要的、包含丰富信息的区域标记出来,并应用到图像分割、图像压缩、图像检索、目标识别等重要领域。针对现有研究方法显著性目标检测结果不完整以及单一依靠颜色差异检测方法的局限性,提出一种综合图像底层颜色对比特征图和图像颜色空间分布特征图的显著性检测方法,能够有效而完整地检测出图像中的显著性区域。
方法
2
本文方法结合了SLIC超像素分割和K-means聚类算法进行图像特征的提取。首先,对图像进行SLIC(simple linear iterative clustering)分割,根据像素块之间的颜色差异求取颜色对比特征图;其次,按照颜色特征对图像进行K-means聚类,依据空间分布紧凑性和颜色分布统一性计算每个类的初步颜色空间分布特征。由于聚类结果中不包含空间信息,本文将聚类后的结果映射到超像素分割的像素块上,进一步优化颜色空间分布图;最后,通过融合颜色对比显著图和图像颜色空间分布特征图得到最终的显著图。
结果
2
针对公开的图像测试数据库MSRA-1000,本文方法与当前几种流行的显著性检测算法进行了对比实验,实验结果表明,本文方法得到的显著性区域更准确、更完整。
结论
2
本文提出了一种简单有效的显著性检测方法,结合颜色对比特征图和图像颜色空间分布特征图可以准确的检测出显著性区域。该结果可用于目标检测等实际问题,但该方法存在一定的不足,对于背景色彩过于丰富且与特征区域有近似颜色的图像,该方法得到的结果有待改进。今后对此算法的优化更加侧重于通用性。
Objective
2
Saliency detection of images aims to predict areas that are most important and contain abundant information in an image. It has been applied to image segmentation
image compression
and object recognition
etc.. Numerous algorithms can be used to compute the saliency of an image
but the resulting saliency map may be incomplete and limited for methods that use color information of images only. A new saliency detection method that combines the color contrast with the color space distribution of images is proposed.
Method
2
Simple linear iterative clustering (SLIC) super-pixel segmentation algorithm and K-means clustering algorithm are used to obtain relevant features to reduce time complexity. We utilize a smoothing filter that can remove the noise of images to acquire a smooth image. We divide our algorithm into three steps. First
the image is preprocessed by using the SLIC algorithm
and a color contrast map is obtained according to the color difference among pixel blocks. Pixel is a basic unit of an image. The difference between a pixel and its surroundings in color can partly determine if the pixel is contained in the salient area. According to this rule
we use pixel block instead of pixel to compute the color difference among pixel blocks and combine the distance among pixel blocks to obtain a color contrast map. Second
K-means clustering of the image according to color feature is performed. The filtered image is classified into M classes according to the features in LAB space
and the initial color space distribution of each class is computed on the basis of the compactness of spatial distribution and the uniformity of color distribution. The spatial color distribution of each class is mapped to super-pixel blocks
and the color space distribution map is further optimized to avoid the lack of spatial information in the clustering results. Third
the color contrast map is combined with the feature map of the image color spatial distribution to obtain the final saliency map.
Result
2
Our method is compared with several popular detection algorithms on a public image test database called MSRA-1000. Experimental results demonstrate that the saliency map obtained in this study is accurate and complete
which illustrates the effectiveness of the proposed method. The resulting precision-recall and receiver operating characteristic curves show that the proposed method has high accuracy under the same recall rate or the same false positive rate.
Conclusion
2
The proposed algorithm combines SLIC super-pixel segmentation and K-means clustering
which optimizes the advantages of the two methods and reduces time complexity. However
the proposed method still has some shortcomings. For example
the color space distribution of images with a complex color distribution may not be good enough
which will result in an incomplete final saliency map. Improvement of the proposed algorithm will concentrate on general applications.
Desimone R, Duncan J. Neural mechanisms of selective visual attention[J]. Annual Review of Neuroscience, 1995, 18:193-222.[DOI:10.1146/annurev.ne.18.030195.001205]
Mannan S K, Kennard C, Husain M. The role of visual salience in directing eye movements in visual object agnosia[J]. Current Biology, 2009, 19(6):R247-R248.[DOI:10.1016/j.cub.2009.02.020]
Itti L, Koch C, Niebur E. A Model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11):1254-1259.[DOI:10.1109/34.730558]
Jonathan Harel, Christof Koch, Pietro Perona. Graph-based visual saliency[C]//Proceedings of 20th Advances in Neural Information Processing Systems. Vancouver, British Columbia, Canada: NIPS, 2006: 545-552.
Achanta R, Estrada F, Wils P, et al. Salient region detection and segmentation[C]//Proceedings of the 6th International Conference on Computer Vision Systems. Santorini, Greece: Springer, 2008: 66-75. [ DOI:10.1007/978-3-540-79547-6_7 http://dx.doi.org/10.1007/978-3-540-79547-6_7 ]
Zhai Y, Shah M. Visual attention detection in video sequences using spatiotemporal cues[C]//Proceedings of the 14th ACM International Conference on Multimedia. Santa Barbara, CA, USA: ACM, 2006: 815-824. [ DOI:10.1145/1180639.1180824 http://dx.doi.org/10.1145/1180639.1180824 ]
Hou X D, Zhang L Q. Saliency detection: a spectral residual approach[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, MN: IEEE, 2007: 1-8. [ DOI:10.1109/CVPR.2007.383267 http://dx.doi.org/10.1109/CVPR.2007.383267 ]
Achanta R, Hemami S, Estrada F, et al. Frequency-tuned salient region detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009: 1597-1604. [ DOI:10.1109/CVPR.2009.5206596 http://dx.doi.org/10.1109/CVPR.2009.5206596 ]
Cheng M, Zhang G, Mitra N J, et al. Global contrast based salient region detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2011: 409-416.
Guo Y C, Yuan H J, Wu P. Image saliency detection based on local and regional features[J]. Acta Automatica Sinica, 2013, 39(8):1214-1224.
郭迎春, 袁浩杰, 吴鹏.基于Local特征和Regional特征的图像显著性检测[J].自动化学报, 2013, 39(8):1214-1224. [DOI:10.3724/SP.J.1004.2013.01214]
Chen C A, Wu X F, Wang B, et al. Video saliency detection using dynamic fusion of spatial-temporal features in complex background with disturbance[J]. Journal of Computer-Aided Design&Computer Graphics, 2016, 28(5):802-812.
陈昶安, 吴晓峰, 王斌, 等.复杂扰动背景下时空特征动态融合的视频显著性检测[J].计算机辅助设计与图形学学报, 2016, 28(5):802-812. [DOI:10.3969/j.issn.1003-9775.2016.05.013]
Hu J Q, He S, Lyu L. Placement optimization for generating bas-reliefs based on visual saliency[J]. Journal of Computer-Aided Design&Computer Graphics, 2016, 28(12):2128-2133.
扈婧乔, 何莎, 吕琳.考虑视觉显著性的模型浅浮雕位置优化算法[J].计算机辅助设计与图形学学报, 2016, 28(12):2128-2133. [DOI:10.3969/j.issn.1003-9775.2016.12.012]
Lin X, Wang Y L, Zhu H L, et al. Saliency detection based on the Bayesian model of improved convex hull[J]. Journal of Computer-Aided Design&Computer Graphics, 2017, 29(2):221-228.
林晓, 王燕玲, 朱恒亮, 等.改进凸包的贝叶斯模型显著性检测算法[J].计算机辅助设计与图形学学报, 2017, 29(2):221-228. [DOI:10.3969/j.issn.1003-9775.2017.02.002]
Wang L J, Lu H C, Ruan X, et al. Deep networks for saliency detection via local estimation and global search[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA: IEEE, 2015: 3183-3192. [ DOI:10.1109/CVPR.2015.7298938 http://dx.doi.org/10.1109/CVPR.2015.7298938 ]
Kruthiventi S S S, Gudisa V, Dholakiya J H, et al. Saliency unified: a deep architecture for simultaneous eye fixation prediction and salient object segmentation[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV: IEEE, 2016: 5781-5790. [ DOI:10.1109/CVPR.2016.623 http://dx.doi.org/10.1109/CVPR.2016.623 ]
Wang Q S, Zheng W, Piramuthu R. GraB: visual saliency via novel graph model and background priors[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV: IEEE, 2016: 535-543. [ DOI:10.1109/CVPR.2016.64 http://dx.doi.org/10.1109/CVPR.2016.64 ]
Ren Z X, Hu Y Q, Chia L T, et al. Improved saliency detection based on superpixel clustering and saliency propagation[C]//Proceedings of the 18th ACM International Conference on Multimedia. Firenze, Italy: ACM, 2010: 1099-1102.
MacQueen J. Some methods for classification and analysis of multivariate observations[C]//The 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley, California: University of California Press, 1967: 281-297.
Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11):2274-2282.[DOI:10.1109/TPAMI.2012.120]
Yang C, Zhang L H, Lu H C, et al. Saliency detection via graph-based manifold ranking[C]//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR: IEEE, 2013: 3166-3173.
Zhang X D, Lyu Y Y, Miao Y W, et al. Image saliency detection using regional covariance analysis[J]. Journal of Image and Graphics, 2016, 21(5):605-615.
张旭东, 吕言言, 缪永伟, 等.结合区域协方差分析的图像显著性检测[J].中国图象图形学报, 2016, 21(5):605-615. [DOI:10.11834/jig.20160508]
Duan L J, Wu C P, Miao J, et al. Visual saliency detection by spatially weighted dissimilarity[C]//Proceedings of 2011 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI: IEEE, 2011: 473-480. [ DOI:10.1109/CVPR.2011.5995676 http://dx.doi.org/10.1109/CVPR.2011.5995676 ]
Goferman S, Zelnik-Manor L, Tal A. Context-aware saliency detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10):1915-1926.[DOI:10.1109/TPAMI.2011.272]
Perazzi F, Krahenbuhl P, Pritch Y, et al. Saliency filters: contrast based filtering for salient region detection[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI: IEEE, 2012: 733-740. [ DOI:10.1109/CVPR.2012.6247743 http://dx.doi.org/10.1109/CVPR.2012.6247743 ]
Tu W C, He S F, Yang Q X, et al.Real-time salient object detection with a minimum spanning tree[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV: IEEE, 2016: 2334-2342.
相关作者
相关机构
京公网安备11010802024621