沿整体C-Bézier曲线的运动
Movement along an integral C-Bézier curve
- 2018年23卷第4期 页码:595-604
收稿:2017-07-10,
修回:2017-9-22,
纸质出版:2018-04-16
DOI: 10.11834/jig.170363
移动端阅览

浏览全部资源
扫码关注微信
收稿:2017-07-10,
修回:2017-9-22,
纸质出版:2018-04-16
移动端阅览
目的
2
整体曲线包括传统有限闭区间(比如[0,
$$α$$
])上的内部段和该区间外的延拓段。在计算机辅助设计(CAD)中,构造整体曲线常用分段表示,存在冗余数据——为了减少冗余,需知道各分段间的关系,并判断它们是否在同一整体曲线上。由此,本文研究当整体C-Bézier曲线原参数域[0,
$$α$$
]在(-∞,+∞)上缩放变动时,曲线的控制顶点的变化情况。
方法
2
通过基函数的递推比较,寻找运动前后控制顶点之间的关系。首先考虑特殊细分情下线性插值。因插值后生成的NUAT-B样条基分段且具有支撑区间,它无法适应整体情况。因此用其与t轴间的区域面积取代它;接着进一步讨论了一般情况下沿整体C-Bézier运动的线性插值。由于C-Bézier参数区间长度要小于
$${\rm{ \mathsf{ π} }}$$
,特殊细分情况下线性插值不能直接推广。不过虽然参数区间在变化,整体曲线上每点位置却不变。针对这点,使用两次递归,寻求得到以线性插值形式沿整体C-Bézier曲线运动的结果。
结果
2
只要保持参数区间的长度在(0,
$${\rm{ \mathsf{ π} }}$$
)上,运动的曲线都可以写成传统的C-Bézier内部段的形式,且控制顶点可以表示为原始控制顶点直接的线性组合,或者逐步地线性插值(包括内插和外插)的形式。
结论
2
考虑整体曲线及沿整体曲线的运动,可以改变C-Bézier曲线的造型区间,减少造型过程中的冗余数据。不过,C-Bézier基由递归积分定义,其运动过程较慢。所以今后可以考虑加速运动的方法,也可以考虑其他类型的拟-Bézier曲线。
Objective
2
The parameter of a conventional C-Bézier curve is often limited in a closed interval. In this study
we focus on an integral one made up of the traditional inner segment in a finite closed interval (such as[0
$$α$$
]) and a part out of the interval. However
in computer-aided design
the modeling of an integral curve is often expressed as different stages and results in redundant data. In fact
when modeling an entire curve
the control points of different segments may have relations with one another. Therefore
if the control points of one segment and some shape parameters are stored
then the entire curve may be obtained
and the curve data may be decreased. We need to determine the relations among different segments and judge whether they are on the same integral curve to decrease the final redundancy. We raise two questions:1) Given an inner curve
can any segment of its integral curve be presented as an inner form? and 2) Are two neighboring inner C-Bézier curves on the same integral curve? We select a C-Bézier curve for our research. The focus of this study is to consider the changes in control vertices for the C-Bézier curve when the original parametric region[0
$$α$$
] is scaled on (-∞
+∞).
Method
2
Any C-Bézier curve is divided into two arcs from geometric point of view:a center Bézier curve and a trigonometric part. On the basis of their movements
any segment of an integral C-Bézier curve can be represented as an inner form. We can analyze relations of control vertices from algebra perspective and give three forms (direct
subdivision
and linear interpolation forms) between newly produced control points in the movement and old ones. First
we represent certain segments of the integral C-Bézier curve as an inner form
consider basis functions recursively
and compare them to obtain the direct form of original control points. Second
one endpoint of the moving segment is considered
which relates to a subdivision scheme. The scheme subdivides the inner curve into two neighboring C-Bézier segments. Similar to the direct form
expressions can be easily worked out by using recursive evaluation. Third
we consider a corner-cutting form under special subdivision situation to identify linear interpolation from easy to difficult. The corner cutting is an alternative of the direct form
and the corner-cutting form can be obtained by the knot-inserting process. However
the NUAT-B-spline generated after interpolation cannot adapt to the integral case because it is piecewise and is zero out of the interval. We use the area between a corner-cutting scheme and t-axis to extend the scheme. Subdivision with a corner-cutting form is obtained on the basis of recursion and the relations between a basis and the subdivision scheme. The linear interpolation form is considered to move along an integral C-Bézier curve for general case. The length of the parameter interval of an inner C-Bézier curve needs to be less than π; thus
the corner-cutting form under special subdivision situation cannot be directly extended. Although the parameter interval of the C-Bézier curve changes
the position of each point on the integral curve never changes. We utilize an evaluation scheme to solve the extension problem. Consistent with Bézier curve
results of the movement along an integral C-Bézier curve with a linear interpolation form are obtained by using recursive evaluation twice. Finally
we establish an algorithm to judge if two given inner C-Bézier curves are on the same integral curve by considering that integral curve can be used to reduce redundant data. The error of the C-Bézier curve can be limited by the error of its control points; hence
we use an error item to control the judgment accuracy after calculating control points by direct form.
Result
2
This study focuses on C-Bézier curves and regards the traditional inner part and the extended part out of an interval as integrals. An inner C-Bézier curve can be moved along the integral curve while its parameter integral length is less than
$${\rm{ \mathsf{ π} }}$$
and motion curves can be represented as an inner C-Bézier form when its parameter interval length is in (0
$${\rm{ \mathsf{ π} }}$$
). New control points can be obtained by a direct linear combination or stepwise linear interpolation (including traditional interpolation and extrapolation) form of the old ones. A subdivision scheme
including direct and corner-cutting forms
of the inner C-Bézier curve is included as a subcase. The integral curve and the movement along it may be considered to reduce redundant storage data.
Conclusion
2
The applications are as follows:First
the movement along an integral C-Bézier can be used to scale the parameter interval of a given C-Bézier curve. Second
integral curve can be considered to reduce redundancy by focusing on the part and extending the parameter interval. Third
two neighboring C-Bézier curves are judged on whether they are on the same integral curve under permissible error. If they are on the same curve
then data of one curve may be reduced while storing
whereas data of the other one can be saved. However
the movement process is slow because of the recursive integral definition of the C-Bézier basis. In the future
we may consider the acceleration of the movement method or other types of Bézier-like curves.
Farin G E. Curves and Surfaces for CAGD:A Practical Guide[M]. 5th ed. San Francisco:Morgan Kaufmann Publishers, 2001.
Hoffmann M, Li Y J, Wang G. Paths of C-Bézier and C-B-spline curves[J]. Computer Aided Geometric Design, 2006, 23(5):463-475.[DOI:10.1016/j.cagd.2006.03.001]
Shen W Q, Wang G Z. Geometric shapes of C-Bézier curves[J]. Computer-Aided Design, 2015, 58:242-247.[DOI:10.1016/j.cad.2014.08.007]
Zhang J W. C-curves:an extension of cubic curves[J]. Computer Aided Geometric Design, 1996, 13(3):199-217.[DOI:10.1016/0167-8396(95)00022-4]
Chen Q Y, Wang G Z. A class of Bézier-like curves[J]. Computer Aided Geometric Design, 2003, 20(1):29-39.[DOI:10.1016/S0167-8396(03)00003-7]
Wang G Z, Li Y J. Optimal properties of the uniform algebraic trigonometric B-splines[J]. Computer Aided Geometric Design, 2006, 23(2):226-238.[DOI:10.1016/j.cagd.2005.09.002]
Carnicer J M, Peña J M. Totally positive bases for shape preserving curve design and optimality of B-splines[J]. Computer Aided Geometric Design, 1994, 11(6):635-654.[DOI:10.1016/0167-8396(94)90056-6]
Mainar E, Peña J M. Quadratic-cycloidal curves[J]. Advances in Computational Mathematics, 2004, 20(1-3):161-175.[DOI:10.1023/A:1025813919473]
Mainar E, Peña J M. A general class of Bernstein-like bases[J]. Computers&Mathematics with Applications, 2007, 53(11):1686-1703.
Li Y J, Wang G Z. Two kinds of B-basis of the algebraic hyperbolic space[J]. Journal of Zhejiang University-Science A, 2005, 6(7):750-759.[DOI:10.1631/jzus.2005.A0750]
Xu G, Wang G Z. AHT Bézier curves and NUAHT B-spline curves[J]. Journal of Computer Science and Technology, 2007, 22(4):597-607.[DOI:10.1007/s11390-007-9073-z]
Fang M, Wang G Z. ω-Bézier[C]//Proceedings of the 10th IEEE International Conference on Computer-Aided Design and Computer Graphics. Beijing: IEEE, 2007: 38-42. [ DOI:10.1109/CADCG.2007.4407852 http://dx.doi.org/10.1109/CADCG.2007.4407852 ]
Cai H H, Wang G J. Construction of cubic C-Bézier spiral and its application in highway design[J]. Journal of Zhejiang University:Engineering Science, 2010, 44(1):68-74.
蔡华辉, 王国瑾.三次C-Bézier螺线构造及其在道路设计中的应用[J].浙江大学学报:工学版, 2010, 44(1):68-74. [DOI:10.3785/j.issn.1008-973X.2010.01.013]
Zhao Y L. Study and application of C-Bézier curves and surfaces of degree n[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2005.
赵玉林. 高阶C-Bézier曲线曲面性质研究及其应用[D]. 南京: 南京航空航天大学, 2005.
Chen Q Y, Wang G Z. Representation of arc with C-Bézier curve[J]. Journal of Software, 2002, 13(11):2155-2161.
陈秦玉, 汪国昭.圆弧的C-Bézier曲线表示[J].软件学报, 2002, 13(11):2155-2161.
Long Y T. Continuity conditions for quartic C-Bézier curves with shape parameter[J]. Journal of Shaanxi University of Science&Technology, 2012, 30(5):113-117.
龙艳婷.四次C-Bézier曲线的拼接技术研究[J].陕西科技大学学报, 2012, 30(5):113-117. [DOI:10.3969/j.issn.1000-5811.2012.05.028]
Chen J L. Biarc approximation of C-Bézier curve[J]. Journal of Hangzhou Dianzi University, 2010, 30(1):78-80.
陈建兰. C-Bézier曲线的双圆弧逼近[J].杭州电子科技大学学报, 2010, 30(1):78-80. [DOI:10.3969/j.issn.1001-9146.2010.01.020]
Cai H H, Wang G J. Approximating logarithmic spiral segments by polynomial and C-Bézier[J]. Journal of Zhejiang University:Engineering Science, 2009, 43(6):999-1004.
蔡华辉, 王国瑾.对数螺线段的多项式逼近与C-Bézier逼近[J].浙江大学学报:工学版, 2009, 43(6):999-1004. [DOI:10.3785/j.issn.1008-973X.2009]
Liu H Y. Joining C-Bézier curves and surfaces with fairing algorithm[J]. Journal of Hebei Polytechnic University:Natural Science Edition, 2008, 30(1):75-79.
刘华勇. C-Bézier曲线曲面的光顺拼接算法[J].河北理工大学学报:自然科学版, 2008, 30(1):75-79. [DOI:10.3969/j.issn.1674-0262.2008.01.018]
Fan J H, Zhang J W, Wu Y J. Shape modification of C-Bézier curves[J]. Journal of Software, 2002, 13(11):2194-2200.
樊建华, 张纪文, 邬义杰. C-Bézier曲线的形状修改[J].软件学报, 2002, 13(11):2194-2200. [DOI:10.13328/j.cnki.jos.2002.11.021]
Chen Q Y, Yang X N, Wang G Z. Properties and applications Of degree 4 C-curve[J]. Applied Mathematics A Journal of Chinese Universities, 2003, 18(1):45-50.
陈秦玉, 杨勋年, 汪国昭.四次C-曲线的性质及其应用[J].高校应用数学学报A辑, 2003, 18(1):45-50. [DOI:10.3969/j.issn.1000-4424.2003.01.008]
Sánchez-Reyes J. Harmonic rational Bézier curves, p-Bézier curves and trigonometric polynomials[J]. Computer Aided Geometric Design, 1998, 15(9):909-923.[DOI:10.1016/S0167-8396(98)00031-4]
He L N, Wang G Z. Subdivision for C-curves of degree five[J]. Journal of Zhejiang University:Science Edition, 2004, 31(2):125-129.
何玲娜, 汪国昭.五次C-曲线的细分[J].浙江大学学报:理学版, 2004, 31(2):125-129. [DOI:10.3321/j.issn:1008-9497.2004.02.002]
Wang G Z, Chen Q Y, Zhou M H. NUAT B-spline curves[J]. Computer Aided Geometric Design, 2004, 21(2):193-205.[DOI:10.1016/j.cagd.2003.10.002]
Zhang J W, Krause F L, Zhang H Y. Unifying C-curves and H-curves by extending the calculation to complex numbers[J]. Computer Aided Geometric Design, 2005, 22(9):865-883.[DOI:10.1016/j.cagd.2005.04.009]
相关作者
相关机构
京公网安备11010802024621