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a b s t r a c t 

Tensor analysis methods have played an important role in identifying human gaits using high dimensional 

data. However, when view angles change, it becomes more and more difficult to recognize cross-view gait 

by learning only a set of multi-linear projection matrices. To address this problem, a general tensor rep- 

resentation framework for cross-view gait recognition is proposed in this paper. There are three criteria 

of tensorial coupled mappings in the proposed framework. (1) Coupled multi-linear locality-preserved 

criterion (CMLP) aims to detect the essential tensorial manifold structure via preserving local informa- 

tion. (2) Coupled multi-linear marginal fisher criterion (CMMF) aims to encode the intra-class compact- 

ness and inter-class separability with local relationships. (3) Coupled multi-linear discriminant analysis 

criterion (CMDA) aims to minimize the intra-class scatter and maximize the inter-class scatter. For the 

three tensor algorithms for cross-view gaits, two sets of multi-linear projection matrices are iteratively 

learned using alternating projection optimization procedures. The proposed methods are compared with 

the recently published cross-view gait recognition approaches on CASIA(B) and OU-ISIR gait database. The 

results demonstrate that the performances of the proposed methods are superior to existing state-of-the- 

art cross-view gait recognition approaches. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

The demand to recognize and authenticate individuals using

iometrics has been rising due to its broad applications in secu-

ity and surveillance. During past decades, many biometrics have

een applied to practice such as face, fingerprint and iris. These

iometrics are unique from person to person, which is essential to

uickly identify the target’s identity. Different from these biomet-

ics, i.e., face, fingerprint, vein, iris, ear, hand shape, palm print,

etina and lip, gait is a kind of soft biometric which aims to recog-

ize one’s identity by his unique walking patterns. It is more po-

ential than the biological characteristics in the surveillance field

ue to the advantage of gait recognition [1,2] lies in the fact that

t can be efficiently recognized at a distance without subjects’ co-

peration. 

The popular gait recognition methods can be roughly classified

nto the following two categories: model-based [3] and motion-
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ased approaches [4–6] . Model-based approaches can extract the

ait features robustly and avoid the noise interference problem.

he changes all over the body can be characterized by a short vec-

or. It is possible for gait recognition to obtain a good performance

f the model is established accurately. However, the modelling and

ts matching processes are both complex. Compared to model-

ased methods, motion-based approaches avoid the complex mod-

lling which can characterize the motion patterns of human body

ithout fitted model parameters. Due to the benefits, motion-

ased approaches attract more attention recent years. However, a

hallenge to motion-based gate recognition is the cross-view is-

ue [7,8] . This is because motion pattern changes dramatically as

he viewing directions move, even though when it is the same

ubject’s gait. This is the main reason why most state-of-the-art

otion-based gate recognition method do not perform well [9–12] .

asically, there is a trend that the larger the variation of viewing

irection is, the worse the recognition performance is. Thus, the

ore research question of this paper is how can we find robust

nd discriminative representations, such that they can enlarge the
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discrimination between different subjects, and meanwhile compact

the variations of the same subject? 

Previous methods try to bridge the view biases by construct-

ing 3D model and performing view transformation model, how-

ever, the former is computationally complex and the latter does

not consider discriminability. Data-driven CNN approaches achieve

significant success in many fields [13–16] , which can be also ap-

plied to gait recognition. Due to its powerful representation ability,

CNN can extract view invariant features. However, limited labelled

data available easily causes the CNN model over-fitting. In another

aspect, CNN model highly relies on expensive GPU hardware to ac-

celerate the training speed. Different from them, tensors are higher

order generalizations of matrices [17] , which is helpful to reduce

the small sample size problem in discriminative subspace selec-

tion. They have been successfully applied to gait recognition under

a fixed angle of view. 

Inspired by success of tensor representation, this paper presents

a novel general tensor representation framework for cross-view

gait recognition. Our formulations model the gait data as a ten-

sor and seek three robust and tensorial discriminative represen-

tations by tensor analysis. Our framework can leverage structure

information and reduce the number of parameters used to model

the cross-view gait recognition. We present three novel criteria

of tensorial coupled mappings. First, by preserving local informa-

tion, we obtain a common subspace that best detects the essen-

tial gait manifold structure. Second, by encoding the intra-class

compactness and inter-class separability with local relationships,

we present coupled multi-linear marginal fisher criterion. Third,

by minimizing the intra-class scatter of cross-view gaits, and si-

multaneously maximizing the inter-class scatter, we propose cou-

pled multi-linear discriminant analysis criterion. These three ten-

sor alignment algorithms of cross-view gaits are achieved by alter-

nating projection optimization procedures. The flourishing of cross-

view gait recognition methods depends largely on well-established

multi-view gait databases, such as CASIA(B) [18] and OU-ISIR [19] .

To the best of our knowledge, our work is the first attempt to ad-

dress the cross-view gait recognition within a framework of tensor

representations. The key contributions of our work can be summa-

rized as follows: 

(1) We propose to model cross-view gait data as tensors and

develop a novel framework of cross-view gait recognition by

tensor representations. 

(2) We present three novel criteria of tensorial coupled map-

pings with their tensor alignment algorithms of cross-view

gaits. 

(3) We systematically evaluate our methods on both the largest

number of cross-views gait database and the largest popula-

tion gait database. 

The remainder of this paper is organized as follows:

Section 2 briefly reviews some related works. Section 3 presents

our general tensor representation framework for cross-view gait

recognition. After that, Section 4 proposes 3 criteria of tensorial

coupled mappings with their tensor alignment algorithms of

cross-view gaits. Then, Section 5 demonstrates the experimental

results on both CASIA(B) and OU-ISIR gait database. Finally, this

paper is concluded in Section 6 . 

2. Related work 

In this section, we give a brief literature review of related topics

to our work, i.e., cross-view gait recognition and tensor represen-

tation for gait analysis. 
.1. Cross-view gait recognition 

Several related work tries to tackle this cross-view gait recog-

ition problem, which can be categories into three classes. The

rst class of work focuses on constructing 3D gait information via

anoramic or multiple calibrated cameras [10,20–22] . These 3D-

ased methods are usually set-up with complicated environment

f controlled multi-cameras, which may not be available in prac-

ice. Even if it is available, its practical application can be adversely

mpacted by the computation complexity. The second category is

ased on view transformation model (VTM). This includes single

alue decomposition (SVD) and regression, which have been mas-

ively deployed to generate gait features with the information from

he other view [23–33] . Although these methods minimize the er-

ors between the transformed features and original gaits features,

hey do not consider the discrimination capability. The third cat-

gory is to extract view-invariant gait feature. Generally, it infers

 view-invariant gait feature among cross-view gait data. For ex-

mple, in [34] , Goffredo et al. proposed a self-calibration of limbs’

ose in the image reference system. However, this method can only

oarsely estimate the limbs’ pose when the view of input gait is

ery different from the registered or front view gaits. To allevi-

te this problem, domain transformation [35–38] , metric learning

39] , and deep CNNs [40–42] have been introduced recently. Espe-

ially, deep CNNs have achieved encouraging recognition accuracy

n the cross-view task due to its powerful representation ability.

he premise of using deep CNNs requires to a large quantity of la-

elled training data efficiently, however, the limited gait data avail-

ble restricts its application. 

.2. Tensor representation for gait analysis 

A variety of multi-linear subspace learning approaches based

n tensor representation have been applied to gait analysis, which

an not only extract spatial-temporal gait information but also

void small size sample problem. For example, Lu et al. [43] pro-

osed multi-linear principal component analysis (MPCA) to capture

ost of the original tensorial input variation. Then, they extend

PCA to Uncorrelated multi-linear principal component analysis

UMPCA) [44] , which can produce uncorrelated features while cap-

uring most of the variation in the original tensorial input. How-

ver, the above algorithms only concentrate on unsupervised di-

ension reduction instead of discriminative feature extraction and

lassification. Therefore, multi-linear discriminant analysis (MLDA)

pproaches [45–47] are proposed for gait feature extraction and

lassification. Tao et al. proposed the general tensor discriminant

nalysis (GTDA) [45] via maximizing the differential between inter-

lass scatters and the weighted intra-class scatters. Yan et al. pro-

osed discriminant analysis with tensor representation (DATER)

46] via maximizing the ratio of inter-class scatters to the intra-

lass scatters. Lu et al. [47] developed uncorrelated multi-linear

iscriminant analysis (UMDA) to explore uncorrelated discrimina-

ive features for gait recognition. Li et al. [48] applied locally lin-

ar embedding (LLE) criterion and separability between different

lasses to formulate tensorization of Discriminant LLE. Aiming at

xtracting discriminative geometry-preserving features from the

riginal tensorial data, Ben et al. [49] proposed maximum margin

rojection with tensor representation. By characterizing the multi-

actor variation, Chen and Hsu [50] proposed multilinear graph

mbedding (MGE) to adequately characterize local variations. Zhao

t al. [51] adopted sparse constraint in tensor discriminative lo-

ality alignment to select gait features. However, the existing ten-

or analysis on gait recognition do not focus on extracting view-

nvariant gait feature, and the tensor representation framework for

ross-view gait recognition is still lack of study. 
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. A general tensor representation framework for cross-view 

ait recognition 

.1. Cross-view gait data multi-linear transformation 

Human gait samples are usually represented by second-

rder tensor or higher-order tensor. Given two sets of train-

ng gait tensorial samples 
{
X i ∈ R 

H 1 ×H 2 ×···×H N , i = 1 , 2 , . . . , M θ }
nd 

{
Y j ∈ R 

L 1 ×L 2 ×···×L N , j = 1 , 2 , . . . , M ϑ 

}
from two views θ and ϑ,

here H n and L n are mode- n dimensions for views θ and ϑ, re-

pectively. M θ and M ϑ are the numbers of gait tensorial samples

or views θ and ϑ, respectively. Generally, both share a consis-

ent one-to-one match between two views, namely, M θ = M ϑ =
. Now our goal is to find transformation functions f θ ( X i ) and

f ϑ 
(
Y j 

)
to make gait data under different views project into a com-

on space and measure their similarity. The objective of a gen-

ral tensor representation framework for cross-view gait recog-

ition is to find a pair of multi-linear transformation matrices

U n ∈ 

H n ×F n , n = 1 , . . . , N 

}
and 

{
V n ∈ 

L n ×F n , n = 1 , . . . , N 

}
to project 

ross-view gait samples into a common lower-dimensional tenso-

ial subspace F 1 �F 2 �����F N from both of original tensorial space

 1 �H 2 �����H N and L 1 �L 2 �����L N respectively. Thus, 

 i = X i ×1 U 

� 
1 ×2 U 

� 
2 · · · ×N U 

� 
N = X i 

N ∏ 

k =1 

×k U 

� 
k , (1)

 j = Y j ×1 V 

� 
1 ×2 V 

� 
2 · · · ×N V 

� 
N = Y j 

N ∏ 

k =1 

×k V 

� 
k , (2)

here A i and B j are projected tensor features for the views θ and

, and A i , B j ∈ R 

F 1 ×F 2 ×···×F N , i, j = 1 , . . . , M. F n is the mode- n dimen-

ion of the projected tensor features, and F n ≤ min ( H n , L n ) . 

.2. The similarity of cross-view gait data 

To simplify the calculation on the similarity between X i and Y j 

cross view, we define 

im 

(
X i , Y j 

)
= ‖ A i − B j ‖ 

2 
F w i j , (3)

 ij is the similarity relationship between X i and X j , which can

e calculated according to side information constraint, Gaussian

imilarity or Cosine similarity [52] . The similarity presented in

able 1 can be used in this paper. 

The mode- n unfoldings of A i and B j can be derived as 

 i ( n ) = U 

� 
n X i ( n ) ( U N � · · · � U n +1 � U n −1 � · · · � U 1 ) = U 

� 
n X i ( n ) ̃

 U n 

(4) 

 j ( n ) = V 

� 
n Y j ( n ) ( V N � · · · � V n +1 � V n −1 � · · · � V 1 ) = V 

� 
n Y j ( n ) ̃

 V n 

(5) 

here ˜ U n = 

∏ N 
k =1 ,k � = n �U k , ˜ V n = 

∏ N 
k =1 ,k � = n �V k . (9) can be written

s 

im 

(
X i , Y j 

)
= ‖ A i − B j ‖ 

2 
F w i j 

= T r 

( [
U n 

V n 

]� [
X i ( n ) ̃

 U n 0 

0 Y j ( n ) ̃
 V n 

][
w i j · I −w i j · I 
−w i j · I w i j · I 

]
[

X i ( n ) ̃
 U n 0 

0 Y j ( n ) ̃
 V n 

]� [
U n 

V n 

]) 

= T r 

(
P 

� 
n Z 

( n ) 
i j 

G i j 

(
Z 

( n ) 
i j 

)� 
P n 

)
, (6)
here P n = 

[
U n 

V n 

]
, Z 

( n ) 
i j 

= 

[
X i ( n ) ̃

 U n 0 

0 Y j ( n ) ̃
 V n 

]
, G i j =

w i j · I −w i j · I 

−w i j · I w i j · I 

]
. The detailed mathematical deductions are 

ut into the Appendix A . 

In the following section, we will introduce 3 criteria with ten-

orial coupled mappings to obtain U n and V n . Table 2 shows the

lignment representation of each criteria used in the proposed

ramework. 

.3. Classification 

We denote Q 1 and Q 2 be projection matrices trained by the im-

roved metric learning approach [52] respectively for the vector-

zed cross-view gait data v ec( A i ) , v ec( B j ) , i, j = 1 , . . . , M. 

In the testing stage, with the learned multi-linear trans-

ormation matrices 
{

U n ∈ R 

H n ×F n , n = 1 , . . . , N 

}
and 

{
V n ∈ R 

L n ×F n , 

n = 1 , . . . , N } , the class label of a query gait tensor Y ∈ R 

L 1 ×L 2 ×···×L N 

nder the view ϑ is determined by π i ∗

 

∗ = arg min 

i 
dis ( f θ ( X i ) , f ϑ ( Y ) ) , (7) 

here π i ∗ denotes the class label of the tensor gait sample which

as smallest distance to the query gait sample Y, and dis ( · , · )

enotes a distance metric function of transformed gait tensor data.

 θ ( · ) and f ϑ( · ) are transformation functions from tensor spaces

 1 �H 2 �����H N and L 1 �L 2 �����L N to a lower dimensional vector

pace, where 

f θ ( X i ) = Q 

� 
1 v ec 

( 

X i 

N ∏ 

k =1 

×k U 

� 
k 

) 

, (8) 

f ϑ ( Y ) = Q 

� 
2 v ec 

( 

Y j 

N ∏ 

k =1 

×k V 

� 
k 

) 

. (9) 

. Three criteria of tensorial coupled mappings 

In this section, we introduce three different criteria under the

nified tensorial framework in the last section and analyse the re-

ationship between them. 

.1. Coupled multi-linear locality-preserved criterion (CMLP) 

Preserving local information, tensorial coupled mappings with

MLP criterion aim to learn a couple of multi-linear projection ma-

rices for views θ and ϑ to obtain a common subspace that best de-

ects the essential gait manifold structure. The objective function is

efined as 

 

U 

∗
n , V 

∗
n , n = 1 , . . . , N } = argmin 

U n , V n ,n =1 , ... ,N 

∑ 

i j 

∥∥∥∥X i 

N ∏ 

k =1 

×k U 

� 
k 

− Y j 

N ∏ 

k =1 

×k V 

� 
k 

∥∥∥∥2 

F 

w i j . (10) 

he above objective function does not have a closed-form solution,

o an iterative procedure (see Algorithm 1 ) is proposed to solve it.
Its mode- n objective function can be written in a trace form

s 

rg min 
U n , V n 

J ( U n , V n ) = 

∑ 

ij 

‖ U 

� 
n X i ( n ) ̃

 U n − V 

� 
n Y j ( n ) ̃  V n ‖ 2 F w ij 

= T r 

( [
U n 

V n 

]� [
X ( n ) ̃

 U n 0 

0 Y ( n ) ̃  V n 

]
[

D 1 � I −W � I 

−W 

� � I D 2 � I 

][
X ( n ) ̃

 U n 0 

0 Y ( n ) ̃  V n 

]� [
U n 

V n 

]) 

, (11) 
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Table 1 

Similarity relationship between X i and X j . 

Side information w i j = 

{
1 , { X i , X j } ∈ C 
0 , else 

X i and X j belong to the identical individual C . 

Cosine similarity w i j = 

{ v ec( X i ) ·v ec( X j ) 
‖ v ec( X i ) ‖‖ v ec( X j ) ‖ , i f X i ∈ N k 

(
X j 
)
or X j ∈ N k ( X i ) 

0 , else 
vec ( · ) denotes a vectorization operator. N k ( · ) denotes k nearest neighbour. 

Gaussian similarity w i j = 

{
exp 

(
−‖ v ec( X i ) − v ec( X j ) ‖ 2 /t 

)
, i f X i ∈ N k 

(
X j 
)
or X j ∈ N k ( X i ) 

0 , else 
t denotes Gaussian variance parameter. 

Table 2 

The criteria, the alignment representation and the objective function used in the proposed framework. 

Criteria Alignment representation Objective function for mode n 

Coupled multi-linear locality-preserved 

criterion (CMLP) 

[
D 1 � I −W � I 

−W 

� � I D 2 � I 

]
arg min 

U n , V n 

∑ 

ij 

‖ U 

� 
n X i ( n ) ̃  U n − V � n Y j ( n ) ̃ V n ‖ 2 F w ij 

Coupled multi-linear marginal fisher 

criterion (CMMF) 

[
D̄ 1 � I −W̄ � I 

−W̄ 

� � I D̄ 2 � I 

] [
˜ D 1 � I − ˜ W � I 

− ˜ W 

� � I ˜ D 2 � I 

]
arg min 

U n , V n 

∑ 
πi = πj 

‖ U � n X i ( n ) ̃ U n −V � n Y j ( n ) ̃ V n ‖ 2 F ̄
w ij ∑ 

πi � = πj 
‖ U � n X i ( n ) ̃ U n −V � n Y j ( n ) ̃ V n ‖ 2 F ̃

 w 
ij 

Coupled multi-linear discriminant 

analysis criterion (CMDA) 

[
I − K � I 0 

0 I − K � I 

] [
K � I − 1 

M 
(e e � ) � I 0 

0 K � I − 1 
M 

(e e � ) � I 

]
arg max 

U n , V n 

C ∑ 
c=1 

⎛ ⎝ N c ‖ U 

� 
n ̄X 

( c ) 
( n ) 

˜ U n − U 

� 
n ̄X ( n ) 

˜ U n ‖ 2 F 

+ N c ‖ V � n ̄Y 
( c ) 
( n ) 

˜ V n − V � n ̄Y ( n ) 
˜ V n ‖ 2 F 

⎞ ⎠ 

C ∑ 
c=1 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
N c ∑ 

i =1 

‖ U 

� 
n X 

( c ) 
i ( n ) 

˜ U n − U 

� 
n ̄X 

( c ) 
( n ) 

˜ U n ‖ 2 F 

+ 

N c ∑ 

j=1 

‖ V � n Y 
( c ) 
j ( n ) 

˜ V n − V � n ̄Y 
( c ) 
( n ) 

˜ V n ‖ 2 F 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

Algorithm 1: Projection of cross-view gaits with CMLP crite- 

rion. 

Input : Two sets of training gait tensor samples {
X i ∈ R 

H 1 ×H 2 ×···×H N , i = 1 , 2 , . . . , M } and {
Y j ∈ R 

L 1 ×L 2 ×···×L N , j = 1 , 2 , . . . , M 

}
from two views θ

and ϑ , dimensionality of the transformed gait tensor 

F 1 × F 2 × · · · × F N , the maximum iteration T max ; 

Output : The projection matrices ( U n , V n ) , n = 1 , . . . , N, the 

aligned tensors 
{
A i ∈ R 

F 1 ×···×F N , i = 1 , . . . , M 

}
and {

B j ∈ R 

F 1 ×···×F N , j = 1 , . . . , M 

}
; 

1 Initialize U 

( 0 ) 
n = I H n , V 

( 0 ) 
n = I L n , n = 1 , . . . , N, where their 

superscript denotes iteration number; 

2 Calculate W , D 1 , D 2 according to Table 1 and (12); 

3 while not converged or t < = T max do 

4 for mode n = 1 : N do 

5 Calculate 

6 

X 

i ( n ) 
˜ U 

( t−1 ) 
n ⇐ n X i ×1 (U 

( t ) 
1 

) � · · ·
×n −1 (U 

( t ) 
n −1 

) � ×n +1 (U 

( t−1 ) 
n +1 

) � · · ·×N (U 

( t−1 ) 
N 

) � 

Y i ( n ) ̃
 U 

( t−1 ) 
n ⇐ n Y j ×1 (V 

( t ) 
1 

) � · · ·×n −1 (V 

( t ) 
n −1 

) � 

×n +1 (V 

( t−1 ) 
n +1 

) � · · ·×N (V 

( t−1 ) 
N 

) � 

; 

7 Calculate auxiliary matrices X ( n ) and Y ( n ) in (11), Z ( n ) 

and G in (13); 

8 Calculate the eigenvalues and eigenvectors of 

Z ( n ) GZ 

� 
( n ) 

p 

( t ) = λ
(

Z ( n ) Z 

� 
( n ) 

)
p 

( t ) and 

P 

( t ) ∗
n = 

[
(U 

( t ) 
n ) � (V 

( t ) 
n ) � 

]� = 

[ 
p 

( n,t ) 
1 

, p 

( n,t ) 
2 

, . . . , p 

( n,t ) 
F n 

] 
where the eigenvectors p 

( n,t ) 
1 

, p 

( n,t ) 
2 

, . . . , p 

( n,t ) 
F n 

corresponding to F n smallest eigenvalues; 

9 end 

10 Check convergence 
∑ N 

n =1 

∥∥∥∥∣∣∣∣P 

( t ) ∗
n 

(
P 

( t−1 ) ∗
n 

)� ∣∣∣∣− I 

∥∥∥∥ ≤ ε . 

11 end 

12 Project the high-dimensional gait tensor to matrices 

( U n , V n ) , n = 1 , . . . , N, and obtain the low-dimensional tensors 

A i = X i ×1 U 

� 
1 ×2 U 

� 
2 · · · ×N U 

� 
N and B j = Y j ×1 V 

� 
1 ×2 V 

� 
2 · · · ×N V 

� 
N ; 

w
[ ]

 [
 

i  

m

D  

 

T  

A

 

l

P

 

{  

w  

(  

l  

j

 

m

{
s

 

w  

t  

u  

A

4

 

p  
here X ( n ) = X 1 ( n ) , X 2 ( n ) , . . . , X M ( n ) , Y ( n ) =
Y 1 ( n ) , Y 2 ( n ) , . . . , Y M ( n ) 

]
, � denotes Kronecker product, and I

s a unit matrix, similarity matrix W is made of w ij , and diagonal

atrices D 1 and D 2 are 

 1 = 

⎡ ⎣ 

∑ 

j w 1 j 0 0 

0 

. . . 0 

0 0 

∑ 

j w M j 

⎤ ⎦ , D 2 = 

⎡ ⎣ 

∑ 

i w i 1 0 0 

0 

. . . 0 

0 0 

∑ 

i w iM 

⎤ ⎦ .

(12)

he detailed mathematical deductions of (11) are put into the

ppendix B . 

To simplify (11) , several auxiliary matrices are defined as fol-

ows 

 n = 

[
U n 

V n 

]
, Z ( n ) = 

[
X ( n ) ̃

 U n 0 

0 Y ( n ) ̃
 V n 

]
, 

G = 

[
D 1 � I −W � I 
−W 

� 
� I D 2 � I 

]
. (13)

Hence, we have the following objective function for mode- n 

 

P 

∗
n , n = 1 , . . . , N } = arg min 

P n 
Tr 
(
P 

� 
n Z ( n ) GZ 

� 
( n ) P n 

)
, (14)

here P 

∗
n denotes the optimal solution for mode- n . Therefore,

11) has been decomposed into N different sub-optimization prob-

ems although 2 N optimized variables are coupled in a single ob-

ective function. 

With the orthogonal constraints introduced into the (14) to

ake { P 

∗
n , n = 1 , . . . , N } unique, we derive 

 

P 

∗
n , n = 1 , . . . , N } = arg min 

P n 
Tr 
(
P 

� 
n Z ( n ) GZ 

� 
( n ) 

P n 

)
 . t . P 

� 
n P n = I , 

(15)

here I ∈ R 

F n ×F n is a unit matrix, e ∈ R 

2 M K n ×1 is a column vec-

or of ones, K n = F n +1 × · · · × F N × F n −1 × · · · × F 1 , the size of a col-

mn vector of zeros 0 is F n × 1. The solution of (15) are listed in

ppendix C . 

.2. Coupled multi-linear marginal fisher criterion (CMMF) 

We proposed CMMF criterion to encode the intra-class com-

actness and inter-class separability with local relationships. As a
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{

esult, for each mode n , the objective function is 

{ U 

∗
n , V 

∗
n , n = 1 , . . . , N } = argmin 

U n , V n ,n =1 , ... ,N ∑ 

πi = π j 
‖ X i ×1 U 

� 
1 · · · ×N U 

� 
N − Y j ×1 V 

� 
1 · · · ×N V 

� 
N ‖ 

2 

F 
w̄ i j ∑ 

πi � = π j 
‖ X i ×1 U 

� 
1 

· · · ×N U 

� 
N 

− Y j ×1 V 

� 
1 

· · · ×N V 

� 
N 
‖ 

2 

F 
˜ w 

i j 

(16) 

here π i and π j denote the class labels of samples i and j , w̄ i j 

enotes the similarity of intra-class gait data, and ˜ w 

i j 
denotes the

imilarity of inter-class gait data, which are defined as 

¯
 i j = 

{
1 , if i ∈ N 

+ 
k 1 

( j ) or j ∈ N 

+ 
k 1 

( i ) 

0 , else 
, 

˜ 
 i j = 

{
1 , if i ∈ N 

−
k 2 

( j ) or j ∈ N 

−
k 2 

( i ) 

0 , else 
, (17) 

here N 

+ 
k 1 

( ·) denotes a set of k 1 intra-class nearest neighbours,

nd N 

−
k 2 

( ·) denotes a set of k 2 inter-class nearest neighbours. 

Like CMLP, the alternating projection optimization procedure

an also decompose (16) into N sub-optimization problems as fol-

ows 

rg min 

U n , V n 
J ( U n , V n ) = 

∑ 

πi = πj 
‖U 

� 
n X i ( n ) ̃

 U n − V 

� 
n Y j ( n ) ̃

 V n ‖ 

2 
F w̄ ij ∑ 

πi � = πj 
‖U 

� 
n X i ( n ) ̃

 U n − V 

� 
n Y j ( n ) ̃

 V n ‖ 

2 
F ˜ w ij 

, 

n = 1 , . . . , N. 

(18) 

q. (18) can be rewritten as 

arg min 

U n , V n 
J ( U n , V n ) 

= 

T r 

( [
U n 

V n 

]� [
X ( n ) ̃

 U n 0 

0 Y ( n ) ̃
 V ( n ) 

][
D̄ 1 � I −W̄ � I 

−W̄ 

� 
� I D̄ 2 � I 

][
X ( n ) ̃U

0 

T r 

( [
U n 

V n 

]� [
X ( n ) ̃

 U n 0 

0 Y ( n ) ̃
 V ( n ) 

][
˜ D 1 � I − ˜ W � I 

− ˜ W 

� 
� I ˜ D 2 � I 

][
X ( n )

0 

here W̄ and 

˜ W are intra-class similarity matrix and inter-class
enalty similarity matrix respectively and both of their i th row j th
olumn elements are w̄ i j and ˜ w 

i j 
. Four diagonal matrices D̄ 1 , D̄ 2 ,

˜ 
 1 and 

˜ D 2 are 

¯
 1 = 

⎡ ⎢ ⎣ 

∑ 

j w̄ 1 j 0 0 

0 
. . . 0 

0 0 
∑ 

j w̄ M j 

⎤ ⎥ ⎦ 

, ̄D 2 = 

⎡ ⎢ ⎣ 

∑ 

i w̄ i 1 0 0 

0 
. . . 0 

0 0 
∑ 

i w̄ iM 

⎤ ⎥ ⎦ 

, 

˜ 
 1 = 

⎡ ⎢ ⎣ 

∑ 

j ˜ w 

1 j 
0 0 

0 
. . . 0 

0 0 
∑ 

j ˜ w 

M j 

⎤ ⎥ ⎦ 

, ̃  D 2 = 

⎡ ⎢ ⎣ 

∑ 

i ˜ w 

i 1 
0 0 

0 
. . . 0 

0 0 
∑ 

i ˜ w 

iM 

⎤ ⎥ ⎦ 

. (20) 

To simplify (19) , two alignment matrices are defined as follows

¯
 = 

[
D̄ 1 � I −W̄ � I 

−W 

� 
� I D̄ 2 � I 

]
, ̃  G = 

[
˜ D 1 � I − ˜ W � I 

− ˜ W 

� 
� I ˜ D 2 � I 

]
. (21) 

hen, (19) reduces to 

rg min 

P n 
J ( P n ) = 

Tr 
(
P 

� 
n Z ( n ) ̄G Z 

� 
( n ) 

P n 

)
Tr 
(
P 

� 
n Z ( n ) ̃

 G Z 

� 
( n ) 

P n 

) . (22) 

Like CMLP, a regularizer τ I , which can be viewed as a small dis-

urbance, can be also imposed on the item 

˜ G to avoid over fitting.

hen we have the following criterion 

rg min 

P n 
J ( P n ) = 

Tr 
(
P 

� 
n Z ( n ) ̄G Z 

� 
( n ) 

P n 

)
Tr 
(
P 

� 
n Z ( n ) 

(
˜ G + τ I 

)
Z 

� 
( n ) 

P n 

) . (23) 
(

0 

Y ( n ) ̃
 V ( n ) 

]� [
U n 

V n 

]) 

0 

Y ( n ) ̃
 V ( n ) 

]� [
U n 

V n 

]) , (19)

he above problem can be converted to solving the generalized

igen-decomposition problem. As a summary, the iterative proce-

ure for the projection of cross-view gaits with CMMF criterion is

resented in Algorithm 2 . 

.3. Coupled multi-linear discriminant analysis criterion (CMDA) 

General tensor discriminant analysis (GTDA) is a linear discrimi-

ant analysis extended in the tensor space, which introduce super-

ised information into multi-linear analysis. Motivated by GTDA,

he mode n intra-class scatter and inter-class scatter matrices in

he projected tensor space are defined as follows: 

 w 

( U n , V n ) = 

C ∑ 

c=1 

( 

N c ∑ 

i =1 

‖ U 

� 
n X 

( c ) 
i ( n ) 

˜ U n − U 

� 
n X̄ 

( c ) 
( n ) 

˜ U n ‖ 

2 
F 

+ 

N c ∑ 

j=1 

‖ V 

� 
n Y 

( c ) 
j ( n ) 

˜ V n − V 

� 
n Ȳ 

( c ) 
( n ) 

˜ V n ‖ 

2 
F 

) 

, 

J b ( U n , V n ) = 

C ∑ 

c=1 

(
N c ‖ U 

� 
n X̄ 

( c ) 
( n ) 

˜ U n − U 

� 
n X̄ ( n ) 

˜ U n ‖ 

2 
F 

+ N c ‖ V 

� 
n Ȳ 

( c ) 
( n ) 

˜ V n − V 

� 
n Ȳ ( n ) 

˜ V n ‖ 

2 
F 

)
, (24) 

here X̄ 

( c ) 
( n ) 

, Ȳ 

( c ) 
( n ) 

are the means of samples from the class c from

wo views θ and ϑ, respectively, X̄ ( n ) and Ȳ ( n ) , are the means of

otal data sets from two views θ and ϑ respectively. 

¯
 

( c ) 
( n ) 

= 

1 

N c 

N c ∑ 

i =1 

X 

( c ) 
i ( n ) 

, ̄Y 

( c ) 
( n ) 

= 

1 

N c 

N c ∑ 

j=1 

Y 

( c ) 
j ( n ) 

, X̄ ( n ) = 

1 

C 

C ∑ 

c=1 

X̄ 

( c ) 
( n ) 

, 

Ȳ ( n ) = 

1 

C 

C ∑ 

c=1 

Ȳ 

( c ) 
( n ) 

. (25) 

gain we wish to construct a large scalar when the mode n intra-
lass scatter is small and the mode n inter-class scatter is large. 

 

U 

∗
n , V 

∗
n } 

= argmax 
U n , V n 

J b ( U n , V n ) 

J w ( U n , V n ) 

= 

C ∑ 

c=1 

(
N c ‖ U 

� 
n X̄ 

( c ) 
( n ) 

˜ U n − U 

� 
n X̄ 

( n ) 
˜ U n ‖ 2 F + N c ‖ V 

� 
n ̄Y 

( c ) 
( n ) 

˜ V n − V 

� 
n ̄Y 

( n ) 
˜ V n ‖ 2 F 

)
C ∑ 

c=1 

(
N c ∑ 

i =1 

‖ U 

� 
n X 

( c ) 
i ( n ) 

˜ U n − U 

� 
n X̄ 

( c ) 
( n ) 

˜ U n ‖ 2 F 
+ 

N c ∑ 

j=1 

‖ V 

� 
n Y 

( c ) 
j ( n ) 

˜ V n − V 

� 
n ̄Y 

( c ) 
( n ) 

˜ V n ‖ 2 F 

)
(26) 

26) can be rewritten as 
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Algorithm 2: Projection of cross-view gaits with CMMF crite- 

rion. 

Input : Two sets of training gait tensor samples {
X i ∈ R 

H 1 ×H 2 ×···×H N , i = 1 , 2 , . . . , M } and {
Y j ∈ R 

L 1 ×L 2 ×···×L N , j = 1 , 2 , . . . , M 

}
from two views θ

and ϑ , dimensionality of the transformed gait tensor 

F 1 × F 2 × · · · × F N , the maximum iteration T max ; 

Output : The projection matrices ( U n , V n ) , n = 1 , . . . , N, the 

aligned tensors 
{
A i ∈ R 

F 1 ×···×F N , i = 1 , . . . , M 

}
and {

B j ∈ R 

F 1 ×···×F N , j = 1 , . . . , M 

}
; 

1 Initialize U 

( 0 ) 
n = I H n , V 

( 0 ) 
n = I L n , n = 1 , . . . , N, where their 

superscript denotes iteration number; 

2 Calculate W̄ , D̄ 1 , D̄ 2 , ˜ W , ̃  D 1 and 

˜ D 2 according to (17) and (20); 

3 while not converged or t < = T max do 

4 for mode n = 1 : N do 

5 Calculate 

6 

X 

i ( n ) 
˜ U 

( t−1 ) 
n ⇐ n X i ×1 (U 

( t ) 
1 

) � · · · ×n −1 (U 

( t ) 
n −1 

) � 

×n +1 (U 

( t−1 ) 
n +1 

) � · · ·×N (U 

( t−1 ) 
N 

) � 

Y i ( n ) ̃
 U 

( t−1 ) 
n ⇐ n Y j ×1 (V 

( t ) 
1 

) � · · ·×n −1 (V 

( t ) 
n −1 

) � 

×n +1 (V 

( t−1 ) 
n +1 

) � · · ·×N (V 

( t−1 ) 
N 

) � . 

; 

7 Calculate auxiliary matrices X ( n ) , Y ( n ) and Z ( n ) as Step 

7 in Algorithm. 1, Ḡ and 

˜ G in (21); 

8 Calculate the generalized eigen-decomposition problem 

on ( Z ( n ) 

(
˜ G + τ I 

)
Z 

� 
( n ) 

) −1 Z ( n ) ̄G Z 

� 
( n ) 

, 

P 

( t ) ∗
n = 

[
(U 

( t ) 
n ) � (V 

( t ) 
n ) � 

]� = 

[ 
p 

( n,t ) 
1 

, p 

( n,t ) 
2 

, . . . , p 

( n,t ) 
F n 

] 
, 

where the eigenvectors p 

( n,t ) 
1 

, p 

( n,t ) 
2 

, . . . , p 

( n,t ) 
F n 

correspond to F n smallest eigenvalues; 

9 end 

10 Check convergence 
∑ N 

n =1 

∥∥∥∥∣∣∣∣P 

( t ) ∗
n 

(
P 

( t−1 ) ∗
n 

)� ∣∣∣∣− I 

∥∥∥∥ ≤ ε ; 

11 end 

12 Project the high-dimensional gait tensor to matrices 

( U n , V n ) , n = 1 , . . . , N, and obtain the low-dimensional tensors 

A i = X i ×1 U 

� 
1 ×2 U 

� 
2 · · · ×N U 

� 
N and B j = Y j ×1 V 

� 
1 ×2 V 

� 
2 · · · ×N V 

� 
N . 

I 

][

1 
M 

(e
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g  

s  

m  

i  

t  

l  

b  

r  

e  

e  

i  

i  

s  

i  

c  

l  
arg min 

U n , V n 
J ( U n , V n ) 

= 

T r 

( [
U n 

V n 

]� [
X ( n ) ̃

 U n 0 

0 Y ( n ) ̃
 V ( n ) 

][
I − K � I 0 

0 I − K �

T r 

( [
U n 

V n 

]� [
X ( n ) ̃

 U n 0 

0 Y ( n ) ̃
 V ( n ) 

][
K � I − 1 

M 

(e e � ) � I 0 

0 K � I −

The detailed mathematical deductions of (27) are put into the

Appendix D . 

To simplify (27) , several auxiliary matrices are defined as fol-

lows 

P n = 

[
U n 

V n 

]
, Z ( n ) = 

[
X ( n ) ̃

 U n 0 

0 Y ( n ) ̃
 V n 

]
, 

G = 

[
I − K � I 0 

0 I − K � I 

]
, 

G 

′ = 

[
K � I − 1 

M 

(e e � ) � I 0 

0 K � I − 1 
M 

(e e � ) � I 

]
. (28)
s

X ( n ) ̃
 U n 0 

0 Y ( n ) ̃
 V ( n ) 

]� [
U n 

V n 

]) 

 e � ) � I 

][
X ( n ) ̃

 U n 0 

0 Y ( n ) ̃
 V ( n ) 

]� [
U n 

V n 

]) . (27) 

hen, (27) reduces to 

rg min 

P n 
J ( P n ) = 

Tr 
(
P 

� 
n Z ( n ) GZ 

� 
( n ) 

P n 

)
Tr 
(
P 

� 
n Z ( n ) G 

′ Z 

� 
( n ) 

P n 

) . (29)

The above problem can be converted to solve the generalized

igen-decomposition problem. As a summary, the iterative proce-

ure for the projection of cross-view gaits with CMDA criterion is

resented in Algorithm 3 . 

.4. Analysis 

Complexity analysis. For all of the three criteria, the time com-

lexity includes three aspects: n -mode projection in step 5 of

lgorithms 1 and 2 , step 4 in Algorithm 3 , the scatter cal-

ulation and general eigenvalue decomposition. In each itera-

ion, the time complexity of the n -mode projection and gen-

ral eigenvalue decomposition can be respectively computed by

 (M 

∑ N 
n =1 H 

2 
n ̃

 H n + L 2 n ̃
 L n ) and O ( 

∑ N 
n =1 (H n + L n ) 3 ) for all the three

ariations, where ˜ H n = �N 
i =1 ,i � = n H i and 

˜ L n = �N 
i =1 ,i � = n L i . For CMLP,

he complexity to compute the scatter matrices in the optimiza-

ion procedure is O ( 
∑ N 

i =1 2 MK n (H n + L n )(2 MK n + H n + L n )) . CMMF

nd CMDA consider both inter-class scatter and intra-class scat-

er, which double the computation cost, i.e., O ( 
∑ N 

i =1 4 MK n (H n +
 n )(2 MK n + H n + L n )) . For simplicity, we assume that H n = L n =

( 
∏ N 

n =1 H n ) 1 /n = ( 
∏ N 

n =1 L n ) 
1 /n = I, thus the computing complexity

f CMLP can be denoted as O (2 MN · I (N+1) + 8 N · I 3 + 8 MNI (M ·
 (N − 1) + I) ∗ F (N − 1)) where it is assumed the dimensionality

f transformed tensor ∀ F n = F , n = 1 , 2 , . . . , N. Similarly, CMMF and

CMDA double the computational complexity. 

Relationship analysis. All of the proposed three variations under

he unified framework aim to learn a shared multi-linear subspace

n which the data biases caused by view differences are allevi-

ted. Then, gait across different views can be directly measured in

he shared subspace. However, the three criteria construct different

anifold structure in the subspace. As in Table 2 , different align-

ent representation are embedded into the manifold graph, which

akes the subspace discriminable. In detail, CMLP constructs a

raph incorporating neighbourhood information across gait views

panned on the dataset. From perspective of Laplacian, we asym-

etrically map the tensor data points from different gait views

nto a shared subspace by a couple of multi-linear projection ma-

rices, which the multi-linear transformation optimally preserves

ocal neighbourhood structure in the shared subspace. CMMF also

lurs the data bias across views by optimally learning asymmet-

ical projections based on local neighbourhood information. How-

ver, CMMF is a multi-linear tensor discriminative model, which

ncodes both the intra-class compactness and inter-class separabil-

ty with local neighbourhood relationships in the manifold. CMDA

s also a discriminative model which make the samples from the

ame class compact and samples from the different class separate

n the shared subspace. In contrast to CMLP and CMMF, CMDA en-

odes not only local neighbourhood information but also global re-

ationships between classes. Though the three criteria follow the

ame framework, each of them build unique manifold. 
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Algorithm 3: Projection of cross-view gaits with CMMF crite- 

rion. 

Input : Two sets of training gait tensor samples {
X i ∈ R 

H 1 ×H 2 ×···×H N , i = 1 , 2 , . . . , M } and {
Y j ∈ R 

L 1 ×L 2 ×···×L N , j = 1 , 2 , . . . , M 

}
from two views θ

and ϑ , dimensionality of the transformed gait tensor 

F 1 × F 2 × · · · × F N , the maximum iteration T max ; 

Output : The projection matrices ( U n , V n ) , n = 1 , . . . , N, the 

aligned tensors 
{
A i ∈ R 

F 1 ×···×F N , i = 1 , . . . , M 

}
and {

B j ∈ R 

F 1 ×···×F N , j = 1 , . . . , M 

}
; 

1 Initialize U 

( 0 ) 
n = I H n , V 

( 0 ) 
n = I L n , n = 1 , . . . , N, where their 

superscript denotes iteration number. 

2 while not converged or t < = T max do 

3 for mode n = 1 : N do 

4 Calculate 

5 

X 

i ( n ) 
˜ U 

( t−1 ) 
n ⇐ n X i ×1 (U 

( t ) 
1 

) � · · · ×n −1 (U 

( t ) 
n −1 

) � 

×n +1 (U 

( t−1 ) 
n +1 

) � · · ·×N (U 

( t−1 ) 
N 

) � 

Y i ( n ) ̃
 U 

( t−1 ) 
n ⇐ n Y j ×1 (V 

( t ) 
1 

) � · · ·×n −1 (V 

( t ) 
n −1 

) � 

×n +1 (V 

( t−1 ) 
n +1 

) � · · ·×N (V 

( t−1 ) 
N 

) � 

; 

6 Calculate auxiliary matrices X ( n ) , Y ( n ) , Z ( n ) , G , G 

′ in 

(28); 

7 Calculate the generalized eigen-decomposition problem 

on ( Z ( n ) 

(
G 

′ + τ I 
)
Z 

� 
( n ) 

) −1 Z ( n ) GZ 

� 
( n ) 

, 

P 

( t ) ∗
n = 

[
(U 

( t ) 
n ) � (V 

( t ) 
n ) � 

]� = 

[ 
p 

( n,t ) 
1 

, p 

( n,t ) 
2 

, . . . , p 

( n,t ) 
F n 

] 
, 

where the eigenvectors p 

( n,t ) 
1 

, p 

( n,t ) 
2 

, . . . , p 

( n,t ) 
F n 

correspond to F n smallest eigenvalues; 

8 end 

9 Check convergence 
∑ N 

n =1 

∥∥∥∥∣∣∣∣P 

( t ) ∗
n 

(
P 

( t−1 ) ∗
n 

)� ∣∣∣∣− I 

∥∥∥∥ ≤ ε ; 

10 end 

11 Project the high-dimensional gait tensor to matrices 

( U n , V n ) , n = 1 , . . . , N, and obtain the low-dimensional tensors 

A i = X i ×1 U 

� 
1 
×2 U 

� 
2 

· · · ×N U 

� 
N 

and B j = Y j ×1 V 

� 
1 
×2 V 

� 
2 

· · · ×N V 

� 
N 
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. Experiments 

In this section, the effectiveness of the proposed framework is

ssessed by extensive experiments conducted on two databases:

1) CASIA(B) gait database and (2) OU-ISIR large population gait

atabase. Videos/images in both databases are collected from

ulti-view cameras; therefore they are most applicable to evalu-

te the performance of cross-view gait recognition. For each gait

equence, we use dual-ellipse fitting approach [53] to detect gait

eriodicity. Then, we adopt gait energy image (GEI) [54] as the gait

eature in a gait cycle. After that, GaborD-based, GaborS-based and

aborSD-based gait representations [45] are used as recognized

eature. GaborD and GaborS features are respectively obtained by

he direction summation and scale summation of Gabor features,

nd GaborSD feature is obtained by both direction and scale sum-

ation of Gabor features. For these three gait representations, the

imension of MPCA is chosen according to a 98% energy crite-

ion as in [43] . Furthermore, the proposed three criteria of tenso-

ial coupled mappings are used for extracting features. Finally, the

earest neighbour classifier is used for classification. 

.1. Databases 

.1.1. CASIA(B) gait database 

The CASIA(B) gait database contains 13,640 sequences of 124

ubjects. For each subject, gaits are recorded by the cameras from
1 views, i.e., 0 °, 18 °, 36 °, 54 °, 72 °, 90 °, 108 °, 126 °, 144 °, 162 °,
nd 180 °. There are 10 gait sequences for each subject: 6 sam-

les under normal condition, 2 samples walking with coats and

 samples carrying bags. Since the samples of walking with coats

nd carrying bags are too limited to calculate intra-class scatter,

ll the 6 samples containing normal walk for each subject are se-

ected for the experiments in this paper. These normal walk sam-

les are divided into training and testing sets, and the first 64

ubjects are used for training and the rest 60 subjects are used

o test the performance of gait recognition approaches under the

iew change. All the GEIs are cropped and normalized to 64 × 64

ixels. Fig. 1 shows the GEIs from 11 viewing angles. After Gabor

lter with the above-mentioned 5 scales and 8 directions, the sizes

f GaborD-based, GaborS-based and GaborSD-based gait features

re 64 × 64 × 8, 64 × 64 × 5 and 64 × 64, respectively. 

.1.2. OU-ISIR large population gait database 

The OU-ISIR large population gait database has been released

ecently. It contains 1912 subjects whose gait sequences are cap-

ured from 4 different observation angles of 55 °, 65 °, 75 ° and 85 °.
e randomly divide OU-ISIR gait database into two sets equally

or 5 times. Therefore, 956 subjects compose the training set, and

he rest 956 subjects make up the testing set. In our experiments,

he size of GEIs is aligned to 64 × 44 pixels. Fig. 2 shows GEIs

rom 4 different views. Compared with the CASIA(B) database, this

atabase contains more subjects with wider range of age variations

ut narrower range of view variations. The sizes of GaborD-based,

aborS-based and GaborSD-based gait features are 64 × 44 × 8,

4 × 44 × 5 and 64 × 44 respectively in our experiments. 

.2. Performance evaluation 

.2.1. Evaluation on the CASIA(B) gait database 

In this section, we evaluate the effectiveness of the pro-

osed GaborD-CMLP, GaborD-CMMF, GaborD-CMDA, GaborS-CMLP, 

aborS-CMMF, GaborS-CMDA, GaborSD-CMLP, GaborSD-CMMF and 

aborSD-CMDA using the CASIA(B) gait database. The numbers of

teration of CMLP, CMMF and CMDA are all set to 5. For fair com-

arison, the recognition accuracies with optimal parameters are re-

orted. Table 3 illustrates the recognition rates of probe view 54 °.
t can be seen that when the difference increases between the

robe and the gallery sample is 18 °, the recognition rates of the

roposed 9 methods, are above 90%, and the recognition rate of

ach method is very close. In addition, the recognition rates de-

rease as the view difference between the gallery and probe views,

ut slow down the downward trend at a symmetrical gallery view

ngle. 

We compare the proposed methods with state-of-the-art cross-

iew gait recognition methods including GEI [54] , CMCC [31] ,

TM+QM [23] , SVD [24] , SVR [32] , MvDA [55] and GEI + Deep

NNs [40] . GEI is a kind of spatial-temporal template, which is

he state-of-the-art feature representation in gait recognition. We

tilized GEI to characterize gait patterns in all of the compared

pproaches. For CMCC, the computing complexity includes four

arts, i.e., bipartite graph modelling, bipartite graph multiparti-

ioning, correlation optimization by CCA and linear approxima-

ion processes, which take O ( MI 2 ), O ( I 3 ), O (( I ′ ) 3 ) and O ( MI ), respec-

ively, where I ′ is the dimension of the GEI segment. The com-

lexity of VTM+QM and SVD is dominated by SVD factorization,

hich is O (2 M 

2 I ). For SVR, the complexity is related to the num-

er of support vectors S v , which is O (S 3 v + MS 2 v + MIS v ) with upper

ound O ( M 

2 I ). For MvDA, computational costs are mainly from ma-

rix inversion and eigenvalue decomposition, and both are O (8 I 3 ).

able 3 tabulates comparison results under Probe view 54 °. As

hown in Table 3 , the proposed methods consistently outperform

ther state-of-the-art methods. The average recognition rate of the
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Fig. 1. GEIs from the CASIA(B) database. 

Table 3 

Comparison on various methods on CASIA(B) under Probe view 54 ° (the best record under each Gallery 

view is marked in bold, the second best is marked by underline ’ _ ’). 

Gallery view 0 ° 18 ° 36 ° 72 ° 90 ° 108 ° 126 ° 144 ° 162 ° 180 °

GEI [54] 0.04 0.09 0.30 0.22 0.18 0.17 0.38 0.19 0.02 0.03 

CMCC [31] 0.24 0.65 0.97 0.95 0.63 0.53 0.48 0.34 0.23 0.22 

VTM + QM [23] 0.21 0.67 0.96 0.97 0.70 0.66 0.39 0.33 0.20 0.22 

SVD [24] 0.13 0.46 0.87 0.81 0.49 0.31 0.27 0.19 0.18 0.16 

SVR [32] 0.22 0.64 0.95 0.93 0.59 0.51 0.42 0.27 0.20 0.21 

MvDA [55] 0.28 0.70 0.98 0.97 0.72 0.68 0.53 0.42 0.25 0.28 

GEI + CNNs [40] 0.5 0.67 0.99 0.99 0.93 0.90 0.79 0.73 0.63 0.62 

GaborD-CMLP 0.37 0.78 0.99 0.97 0.82 0.69 0.64 0.55 0.33 0.32 

GaborD-CMMF 0.43 0.72 0.99 0.98 0.82 0.71 0.66 0.56 0.37 0.30 

GaborD-CMDA 0.31 0.51 0.92 0.86 0.57 0.58 0.53 0.30 0.25 0.25 

GaborS-CMLP 0.38 0.74 0.99 0.97 0.79 0.73 0.73 0.51 0.38 0.33 

GaborS-CMMF 0.42 0.78 0.99 0.98 0.81 0.76 0.65 0.53 0.37 0.35 

GaborS-CMDA 0.31 0.66 0.96 0.95 0.74 0.61 0.61 0.42 0.34 0.29 

GaborSD-CMLP 0.36 0.70 0.98 0.96 0.82 0.73 0.70 0.57 0.37 0.33 

GaborSD-CMMF 0.37 0.72 0.99 0.98 0.81 0.77 0.76 0.57 0.42 0.33 

GaborSD-CMDA 0.25 0.52 0.93 0.90 0.64 0.59 0.54 0.42 0.39 0.29 

Fig. 2. GEIs from the OU-ISIR database. 
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proposed methods is 14%, 13%, 27%, 16% and 7% higher than CMCC,

VTM+QM, SVD, SVR and MvDA. Particularly, the proposed methods

achieve more remarkable increase under large view differences.

Compared to GEI + CNNs, the proposed approaches achieve equiva-

lent performances under small view variance, i.e., 18 °. But, the per-

formances of the proposed approaches are still posterior when the

view differences are enlarged. Though GEI + CNNs achieves bet-

ter performances, it demands large volume of labelled data and

high computational costs which is not practical in gait recogni-

tion. In contrast, our proposed approaches overcome the draw-

backs which aims at small size sample problem and reduces de-

pendences on computational sources. Especially, our framework

can achieve equal performance under small view variances. 

5.2.2. Evaluation on the OU-ISIR large population gait database 

Since OU-ISIR gait database contains two gait sequences per

subject, each query subject’s one angle view GEIs are used as

gallery samples, and GEIs under other angle view are used as query

samples. We repeat the experiment by swapping the samples in

the training and testing sets, therefore, we test the recognition

rates for 10 times for each cross-view as [55] . The average recog-

nition rates over these 10 runs are reported in this paper. 

We evaluate the accuracies of the proposed GaborD-CMLP,

GaborD-CMMF, GaborD-CMDA, GaborS-CMLP, GaborS-CMMF,

GaborS-CMDA, GaborSD-CMLP, GaborSD-CMMF and GaborSD-

CMDA, and also the effect of view angle variations. Table 4

illustrates the recognition rates with the gallery view and probe

view of 55 °, 65 °, 75 ° and 85 °. We observe that the recognition

rates decrease monotonically as the view difference between the

gallery and probe views. The lowest recognition rate can reach

more than 96% even when the maximum view difference is 30 °
(85 ◦ − 55 ◦) . 
We also compare the proposed methods with those above-

entioned state-of-the-art cross-view gait recognition methods

sing OU-ISIR database. Because the performance results of the

roposed method are very close, the data is retained to the

hird digit after the decimal point, which is easier to distin-

uish between the pros and cons of them. Namely, we report

he results accurate to one-thousandth for the OU-ISIR database.

able 4 presents the results in terms of recognition rate for the

ifferent methods. We can see that the proposed methods yield

verage increases of 13%, 17%, 19%, 20% and 5% as compared to

MCC, VTM+QM, SVD, SVR and MvDA. These results, again, cor-

oborate the useful tensor representation framework in addressing

he cross-view gait recognition. It worth to point out that the pro-

osed approaches achieve slightly prior performance compared to

EI + CNNs. This verifies the conclusion on CASIA(B) dataset that

he proposed framework is effective when view difference is rele-

ant small. 

.2.3. Ablation study 

In this section, we evaluate the effectiveness of each compo-

ent, i.e., Gabor-based features and tensor-based coupled metric

earning framework. Fig. 3 compares identification accuracies ver-

us various tensorial coupled mapping methods using GEI and

abor-based features on OU-ISIR large population gait dataset. We

how the recognition results of various gallery views under fixed

robe view 75 ° in sub-figure (a)–(c). From the figures, it can be

een that Gabor-based features achieve superior performances than

EI in most cases when the tensorial coupled mapping approach is

xed. This verifies that Gabor-based feature features boost the per-

ormances compared vanilla GEI. It is reasonable since Gabor-based

eatures are learned from GEIs and sensitive to gait pattern varia-

ions. The conclusion is also verified in many deep learning studies

56,57] , and they prove that CNN learns Gabor features in shallow

ayers. 

Fig. 4 illustrates the effectiveness of the proposed tensorial cou-

led mapping framework. Sub-figure (a)–(c) show the recognition

esults of various gallery views, i.e., 55 °, 65 ° and 85 °, when the

robe view is set to 75 °. It is easy to observe that the proposed

pproaches under the unified tensorial coupled mapping frame-

ork outperform the deep CNNs with a large margin when com-
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Table 4 

Comparison on various methods on OU-ISIR (the best record under each gallery view is marked in bold, the second best is marked 

by underline ’ _ ’). 

Probe view ( °) 55 65 75 85 

Gallery view ( °) 65 75 85 55 75 85 55 65 85 55 65 75 

GEI [54] 0.284 0.058 0.277 0.277 0.670 0.195 0.507 0.640 0.969 0.262 0.207 0.969 

CMCC [31] 0.968 0.785 0.646 0.974 0.963 0.826 0.800 0.975 0.969 0.749 0.785 0.965 

VTM + QM [23] 0.941 0.704 0.491 0.957 0.966 0.785 0.756 0.971 0.964 0.555 0.838 0.978 

SVD [24] 0.932 0.704 0.523 0.923 0.936 0.771 0.774 0.940 0.947 0.523 0.763 0.925 

SVR [32] 0.936 0.710 0.531 0.940 0.943 0.720 0.753 0.943 0.941 0.511 0.711 0.938 

MvDA [55] 0.975 0.922 0.858 0.974 0.984 0.949 0.925 0.984 0.985 0.877 0.957 0.988 

GEI + CNNs [40] 0.983 0.960 0.805 0.963 0.973 0.833 0.942 0.978 0.851 0.900 0.960 0.984 

GaborD-CMLP 0.999 0.990 0.972 1.0 0 0 1.0 0 0 0.996 0.989 1.0 0 0 0.995 0.969 0.996 1.0 0 0 

GaborD-CMMF 0.998 0.991 0.970 1.0 0 0 1.0 0 0 0.996 0.990 1.0 0 0 0.999 0.971 0.994 1.0 0 0 

GaborD-CMDA 0.998 0.992 0.967 1.0 0 0 1.0 0 0 0.995 0.991 1.0 0 0 1.0 0 0 0.967 0.994 1.0 0 0 

GaborS-CMLP 0.999 0.992 0.971 1.0 0 0 1.0 0 0 0.997 0.993 1.0 0 0 1.0 0 0 0.972 0.996 1.0 0 0 

GaborS-CMMF 0.999 0.992 0.972 1.0 0 0 1.0 0 0 0.997 0.993 1.0 0 0 1.0 0 0 0.970 0.997 1.0 0 0 

GaborS-CMDA 0.998 0.989 0.968 1.0 0 0 1.0 0 0 0.997 0.990 1.0 0 0 1.0 0 0 0.963 0.997 1.0 0 0 

GaborSD-CMLP 0.998 0.989 0.971 1.0 0 0 1.0 0 0 0.997 0.975 1.0 0 0 1.0 0 0 0.970 0.993 1.0 0 0 

GaborSD-CMMF 0.999 0.991 0.965 1.0 0 0 1.0 0 0 0.996 0.987 0.999 1.0 0 0 0.966 0.994 1.0 0 0 

GaborSD-CMDA 0.998 0.984 0.967 1.0 0 0 1.0 0 0 0.994 0.988 1.0 0 0 1.0 0 0 0.964 0.994 1.0 0 0 

Fig. 3. A comparison of different features on the OU-ISIR database. 

Fig. 4. An illustration of the proposed tensorial coupled mapping framework with Gabor-based features on the OU-ISIR database. 
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ining with Gabor-based features. It demonstrates the effectiveness

f our proposed tensorial coupled mapping framework. In another

spects, it exposes the shortage of deep CNNs that it is easy to

e overfitting when the training data is limited. In particular, gait

ata is simple which also restricts the depth of deep CNNs [40] .

t is worth to noting that GEI + CNNs achieves better performance

han Gabor-based features + CNNs as in Table 4 . We believe that

he reason is two-fold: one is that data-driven learned filters using

eep CNNs are more appropriate than hand-crafted filters using

abor; the other one is that it is easier to overfit for Gabor-based

eatures than GEI when using the same depth CNN framework, be-

ause the deep CNNs learn Gabor features in shallow layers [56] . 

Thus it is appropriate to combine Gabor-based features and

he proposed tensorial coupled mapping framework together. Each

omponent improves performance of the whole gait recognition

ystem. 

 

.3. Discussion 

Based on the comparative experiments on the CASIA(B) and

U-ISIR gait databases, we discuss and analyse the effects of Ga-

or gait representation and three criteria of tensorial coupled map-

ings. 

(1) The experiments in Section 5.2 show that the GaborS-based

representation performs slightly better than GaborD-based 

representations which somewhat outperforms the GaborSD 

representation for cross-view gait recognition. This obser-

vation is consistent with [45] . GaborS and GaborD benefit

cross-view gait recognition with Gabor functions over scales

and directions representation. 

(2) CMLP criterion has the ability to learn the essential gait

manifold structure. By minimizing the distance between gait

tensor data under two different observation angles for the
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identical subject, simultaneously suppressing the similarity

of different subjects, as defined in (10) , CMLP algorithm

can enlarge the discrimination between different subjects,

and meanwhile compact the variations of the same subject.

Therefore, GaborD-CMLP, GaborS-CMLP and GaborSD-CMLP

generally achieve good performance. 

(3) CMMF criterion minimizes the ratio of intra-class similar-

ity to the inter-class similarity, which ensures the intra-

class compactness and inter-class separability. Compared

with CMLP criterion, CMMF criterion relies on Fisher dis-

crimination which is more conducive to classification. There-

fore, CMMF criterion yields better recognition performance

than CMLP criterion. 

(4) Due to the lack of constrained relationship between cross-

view gait tensor data, CMDA criterion is worst among the

three criteria. Still, it is far superior to other state-of-the-art

methods. 

6. Conclusion 

Cross-view gait recognition is a challenging task because the

appearance change caused by view variation. We handle this prob-

lem by designing a general tensor representation framework that

employs coupled metric learning from cross-view gait tensor data.

First, we use GaborD, GaborS and GaborSD to extract Gabor fea-

ture with different scales and directions from GEIs. To enhance

discrimination between different subjects, and meanwhile com-

pact the variations of the same subject, three criteria of tensorial

coupled mappings are proposed to project Gabor-based represen-

tations to a common subspace for recognition. Extensive experi-

ments conducted on CASIA(B) and OU-ISIR gait database demon-

strate the proposed methods are superior to other state-of-the-art

methods. Moreover the proposed methods achieve slightly prior

performance compared to GEI + CNNs when view difference is rel-

evant small. When view difference is large, the advantage of CNNs

may be more obvious. In the future, we will try a CNN represen-

tation framework to select view-invariant gait features for large

cross-view gait recognition. 
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Appendix A. Similarity between A i and B i 
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ppendix B. Derivation of mode- n objective function of (11) 

The mode- n objective function of (11) is obtained as follows: 
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ppendix C. The solution of (15) 

Eq. (15) can be solved by a generalized eigen-decomposition of

 ( n ) GZ 

� 
( n ) p = λ

(
Z ( n ) Z 

� 
( n ) 

)
p . (C.1)
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( n ) 
1 
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( n ) 
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, . . . , p 
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corresponding to
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 ( n ) Z 

� 
( n ) 

is usually non-invertible. In order to eliminate the singu-

arity and to avoid over fitting, a regularizer τ I is imposed on the

tem Z ( n ) Z 

� 
( n ) 

, where I ∈ R 

( H n + L n ) ×( H n + L n ) and is a small positive

onstant, such as τ = 10 −6 used in this paper. P n can be divided

nto two matrices U n and V n . U n corresponds to the 1st to H n th

ows of P n and V n corresponds to the ( H n + 1) th to ( H n + L n ) th

ows of P n . 

ppendix D. Derivation of the mode- n objective function of 
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where X c(n ) = [ X 

(c) 
1(n ) 

, . . . , X 

(c) 
M(n ) 

] , for c = 1 ,

 . . , C, X (n ) = [ X 1(n ) , . . . , X C(n ) ] , K i j =
1 

N c 
if X i ( Y i ) and X j ( Y j ) both belong to the c − th class 

0 else 
. 
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)
( X c ( n ) 

˜ U n ) 
� )

= X (n ) ̃
 U n (I − K � I ) (X (n ) 

˜ U n ) 
� , (D.2) 

 2 = 

C ∑ 

c=1 

N c ∑ 

j=1 

(
Y 

( c ) 
j ( n ) 

˜ V n − Ȳ 

( c ) 
( n ) 

˜ V n 

)(
Y 

( c ) 
j ( n ) 

˜ V n − Ȳ 

( c ) 
( n ) 
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)� 

= ( Y (n ) ̃
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� . (D.3) 

Thus, the alignment expression is obtained as J w 

( U n , V n ) = 

 r 

( [
U n 

V n 

]� [
X ( n ) ̃

 U n 0 

0 Y ( n ) ̃
 V ( n ) 

][
I − K � I 0 

0 I − K � I 

]
[

X ( n ) ̃
 U n 0 

0 Y ( n ) ̃
 V ( n ) 

]� [
U n 

V n 

]) 

he numerator of (26) can be rewritten as 
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here 
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(
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hus, the alignment expression is obtained as follows 

 b ( U n , V n ) = T r 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

( [
U n 

V n 

]� [
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]) 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

o the objective function for mode n can be expressed as (27) . 
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