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Tensor analysis methods have played an important role in identifying human gaits using high dimensional
data. However, when view angles change, it becomes more and more difficult to recognize cross-view gait
by learning only a set of multi-linear projection matrices. To address this problem, a general tensor rep-
resentation framework for cross-view gait recognition is proposed in this paper. There are three criteria
of tensorial coupled mappings in the proposed framework. (1) Coupled multi-linear locality-preserved
criterion (CMLP) aims to detect the essential tensorial manifold structure via preserving local informa-
tion. (2) Coupled multi-linear marginal fisher criterion (CMMF) aims to encode the intra-class compact-
ness and inter-class separability with local relationships. (3) Coupled multi-linear discriminant analysis
criterion (CMDA) aims to minimize the intra-class scatter and maximize the inter-class scatter. For the
three tensor algorithms for cross-view gaits, two sets of multi-linear projection matrices are iteratively
learned using alternating projection optimization procedures. The proposed methods are compared with
the recently published cross-view gait recognition approaches on CASIA(B) and OU-ISIR gait database. The
results demonstrate that the performances of the proposed methods are superior to existing state-of-the-

art cross-view gait recognition approaches.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The demand to recognize and authenticate individuals using
biometrics has been rising due to its broad applications in secu-
rity and surveillance. During past decades, many biometrics have
been applied to practice such as face, fingerprint and iris. These
biometrics are unique from person to person, which is essential to
quickly identify the target’s identity. Different from these biomet-
rics, i.e., face, fingerprint, vein, iris, ear, hand shape, palm print,
retina and lip, gait is a kind of soft biometric which aims to recog-
nize one’s identity by his unique walking patterns. It is more po-
tential than the biological characteristics in the surveillance field
due to the advantage of gait recognition [1,2] lies in the fact that
it can be efficiently recognized at a distance without subjects’ co-
operation.

The popular gait recognition methods can be roughly classified
into the following two categories: model-based [3] and motion-
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based approaches [4-6]. Model-based approaches can extract the
gait features robustly and avoid the noise interference problem.
The changes all over the body can be characterized by a short vec-
tor. It is possible for gait recognition to obtain a good performance
if the model is established accurately. However, the modelling and
its matching processes are both complex. Compared to model-
based methods, motion-based approaches avoid the complex mod-
elling which can characterize the motion patterns of human body
without fitted model parameters. Due to the benefits, motion-
based approaches attract more attention recent years. However, a
challenge to motion-based gate recognition is the cross-view is-
sue [7,8]. This is because motion pattern changes dramatically as
the viewing directions move, even though when it is the same
subject’s gait. This is the main reason why most state-of-the-art
motion-based gate recognition method do not perform well [9-12].
Basically, there is a trend that the larger the variation of viewing
direction is, the worse the recognition performance is. Thus, the
core research question of this paper is how can we find robust
and discriminative representations, such that they can enlarge the
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discrimination between different subjects, and meanwhile compact
the variations of the same subject?

Previous methods try to bridge the view biases by construct-
ing 3D model and performing view transformation model, how-
ever, the former is computationally complex and the latter does
not consider discriminability. Data-driven CNN approaches achieve
significant success in many fields [13-16], which can be also ap-
plied to gait recognition. Due to its powerful representation ability,
CNN can extract view invariant features. However, limited labelled
data available easily causes the CNN model over-fitting. In another
aspect, CNN model highly relies on expensive GPU hardware to ac-
celerate the training speed. Different from them, tensors are higher
order generalizations of matrices [17], which is helpful to reduce
the small sample size problem in discriminative subspace selec-
tion. They have been successfully applied to gait recognition under
a fixed angle of view.

Inspired by success of tensor representation, this paper presents
a novel general tensor representation framework for cross-view
gait recognition. Our formulations model the gait data as a ten-
sor and seek three robust and tensorial discriminative represen-
tations by tensor analysis. Our framework can leverage structure
information and reduce the number of parameters used to model
the cross-view gait recognition. We present three novel criteria
of tensorial coupled mappings. First, by preserving local informa-
tion, we obtain a common subspace that best detects the essen-
tial gait manifold structure. Second, by encoding the intra-class
compactness and inter-class separability with local relationships,
we present coupled multi-linear marginal fisher criterion. Third,
by minimizing the intra-class scatter of cross-view gaits, and si-
multaneously maximizing the inter-class scatter, we propose cou-
pled multi-linear discriminant analysis criterion. These three ten-
sor alignment algorithms of cross-view gaits are achieved by alter-
nating projection optimization procedures. The flourishing of cross-
view gait recognition methods depends largely on well-established
multi-view gait databases, such as CASIA(B) [18] and OU-ISIR [19].
To the best of our knowledge, our work is the first attempt to ad-
dress the cross-view gait recognition within a framework of tensor
representations. The key contributions of our work can be summa-
rized as follows:

(1) We propose to model cross-view gait data as tensors and
develop a novel framework of cross-view gait recognition by
tensor representations.

(2) We present three novel criteria of tensorial coupled map-
pings with their tensor alignment algorithms of cross-view
gaits.

(3) We systematically evaluate our methods on both the largest
number of cross-views gait database and the largest popula-
tion gait database.

The remainder of this paper is organized as follows:
Section 2 briefly reviews some related works. Section 3 presents
our general tensor representation framework for cross-view gait
recognition. After that, Section 4 proposes 3 criteria of tensorial
coupled mappings with their tensor alignment algorithms of
cross-view gaits. Then, Section 5 demonstrates the experimental
results on both CASIA(B) and OU-ISIR gait database. Finally, this
paper is concluded in Section 6.

2. Related work

In this section, we give a brief literature review of related topics
to our work, i.e., cross-view gait recognition and tensor represen-
tation for gait analysis.

2.1. Cross-view gait recognition

Several related work tries to tackle this cross-view gait recog-
nition problem, which can be categories into three classes. The
first class of work focuses on constructing 3D gait information via
panoramic or multiple calibrated cameras [10,20-22]. These 3D-
based methods are usually set-up with complicated environment
of controlled multi-cameras, which may not be available in prac-
tice. Even if it is available, its practical application can be adversely
impacted by the computation complexity. The second category is
based on view transformation model (VTM). This includes single
value decomposition (SVD) and regression, which have been mas-
sively deployed to generate gait features with the information from
the other view [23-33]. Although these methods minimize the er-
rors between the transformed features and original gaits features,
they do not consider the discrimination capability. The third cat-
egory is to extract view-invariant gait feature. Generally, it infers
a view-invariant gait feature among cross-view gait data. For ex-
ample, in [34], Goffredo et al. proposed a self-calibration of limbs’
pose in the image reference system. However, this method can only
coarsely estimate the limbs’ pose when the view of input gait is
very different from the registered or front view gaits. To allevi-
ate this problem, domain transformation [35-38], metric learning
[39], and deep CNNs [40-42] have been introduced recently. Espe-
cially, deep CNNs have achieved encouraging recognition accuracy
on the cross-view task due to its powerful representation ability.
The premise of using deep CNNs requires to a large quantity of la-
belled training data efficiently, however, the limited gait data avail-
able restricts its application.

2.2. Tensor representation for gait analysis

A variety of multi-linear subspace learning approaches based
on tensor representation have been applied to gait analysis, which
can not only extract spatial-temporal gait information but also
avoid small size sample problem. For example, Lu et al. [43] pro-
posed multi-linear principal component analysis (MPCA) to capture
most of the original tensorial input variation. Then, they extend
MPCA to Uncorrelated multi-linear principal component analysis
(UMPCA) [44], which can produce uncorrelated features while cap-
turing most of the variation in the original tensorial input. How-
ever, the above algorithms only concentrate on unsupervised di-
mension reduction instead of discriminative feature extraction and
classification. Therefore, multi-linear discriminant analysis (MLDA)
approaches [45-47| are proposed for gait feature extraction and
classification. Tao et al. proposed the general tensor discriminant
analysis (GTDA) [45] via maximizing the differential between inter-
class scatters and the weighted intra-class scatters. Yan et al. pro-
posed discriminant analysis with tensor representation (DATER)
[46] via maximizing the ratio of inter-class scatters to the intra-
class scatters. Lu et al. [47] developed uncorrelated multi-linear
discriminant analysis (UMDA) to explore uncorrelated discrimina-
tive features for gait recognition. Li et al. [48] applied locally lin-
ear embedding (LLE) criterion and separability between different
classes to formulate tensorization of Discriminant LLE. Aiming at
extracting discriminative geometry-preserving features from the
original tensorial data, Ben et al. [49] proposed maximum margin
projection with tensor representation. By characterizing the multi-
factor variation, Chen and Hsu [50] proposed multilinear graph
embedding (MGE) to adequately characterize local variations. Zhao
et al. [51] adopted sparse constraint in tensor discriminative lo-
cality alignment to select gait features. However, the existing ten-
sor analysis on gait recognition do not focus on extracting view-
invariant gait feature, and the tensor representation framework for
cross-view gait recognition is still lack of study.



X. Ben, P. Zhang and Z. Lai et al./Pattern Recognition 90 (2019) 87-98 89

3. A general tensor representation framework for cross-view
gait recognition

3.1. Cross-view gait data multi-linear transformation

Human gait samples are usually represented by second-
order tensor or higher-order tensor. Given two sets of train-
ing gait tensorial samples {X,- e RArxHxHy =12 . My}
and {V; e RlvxlxxIv j=1,2,... My} from two views 6 and 9,
where H, and L, are mode-n dimensions for views 6 and ¢, re-
spectively. My and My are the numbers of gait tensorial samples
for views 6 and 9, respectively. Generally, both share a consis-
tent one-to-one match between two views, namely, My = My =
M. Now our goal is to find transformation functions fy(X;) and
fo (yj) to make gait data under different views project into a com-
mon space and measure their similarity. The objective of a gen-
eral tensor representation framework for cross-view gait recog-
nition is to find a pair of multi-linear transformation matrices
{Un etifn=1,... N} and {V, elnFi n=1,... N} to project
cross-view gait samples into a common lower-dimensional tenso-
rial subspace F{®F,®---®Fy from both of original tensorial space
Hi®H,®---®Hy and L1 ®L,®---QLy respectively. Thus,

N
Ai = XU Ug - oxnUg = 4T | <Yy (1)
k=1
N
szij1VIX2V;~~-XNVEZyjl_[ka,—{r, (2)
k=1

where A; and B; are projected tensor features for the views 6 and
9, and A;, Bj e RFvBoexb i j=1,. M. F, is the mode-n dimen-
sion of the projected tensor features, and F, < min(Hy, Lp).

3.2. The similarity of cross-view gait data

To simplify the calculation on the similarity between &; and Y
across view, we define
sim(&;, ¥5) = |14 — Bjl|2w;, (3)
wjy is the similarity relationship between &; and &, which can
be calculated according to side information constraint, Gaussian
similarity or Cosine similarity [52]. The similarity presented in
Table 1 can be used in this paper.

The mode-n unfoldings of A; and B; can be derived as
Ay = Ui Xiny(Uy® - @ Upp1 @ Up_1 @ - ® Uy) = U] Xy O

(4)

Biy =V Yjimy(Ww® - @ Vi1 @V 1 @@ Vi) = V] Yy Uy
(5)

where U, = ]'[5:’:”<¢n ®Uy, VU, = ]'[f:”(#n ®V,. (9) can be written
as

sim (X, ¥5) = [l4; = Bjllfw;

T ~
- Tr Uy Xi(n)Un 0 . wij -1 —w;; -1
Vn 0 Yj(n)vn —W,'j -1 W,‘j -1

~ T
XinOn 0 ] [U,
O Y](n)Vr, vn

.
= 1r(PiZP 6, (z") Py, (6)

U XimOn 0
h _[u] o0 _ [XiwOn | e
where n |:Vn] ij 0 Yj(n)vn ij
wij -1 “Wij 1l The detailed mathematical deductions are
_Wij -1 W,‘j |

put into the Appendix A.

In the following section, we will introduce 3 criteria with ten-
sorial coupled mappings to obtain U, and V,. Table 2 shows the
alignment representation of each criteria used in the proposed
framework.

3.3. Classification

We denote Q; and Q, be projection matrices trained by the im-
proved metric learning approach [52] respectively for the vector-
ized cross-view gait data vec(A;), vec(B;),i,j=1,..., M.

In the testing stage, with the learned multi-linear trans-

formation matrices {Uy € RFfv<fr n=1,... N} and {V, e Rin*F,

n=1,...,N}, the class label of a query gait tensor ) € RE1xL2xxLy

under the view § is determined by

i* = argmindis (fp (%), f5 (V)), (7)
1

where 7;+ denotes the class label of the tensor gait sample which
has smallest distance to the query gait sample ), and dis (-, -)
denotes a distance metric function of transformed gait tensor data.
fo(+) and fs(-) are transformation functions from tensor spaces
H{®H,®---®Hy and L1®L,®---®Ly to a lower dimensional vector
space, where

N

fo(x) =Qivec| 4[] =y |, (8)
k=1
N

fo ) =Quec| ¥ [ =uVy |- 9)

k=1

4. Three criteria of tensorial coupled mappings

In this section, we introduce three different criteria under the
unified tensorial framework in the last section and analyse the re-
lationship between them.

4.1. Coupled multi-linear locality-preserved criterion (CMLP)

Preserving local information, tensorial coupled mappings with
CMLP criterion aim to learn a couple of multi-linear projection ma-
trices for views 6 and 4 to obtain a common subspace that best de-
tects the essential gait manifold structure. The objective function is
defined as

N
U, Vin=1,...,N} = argmin T T < uf
U;. Vi } UpVyn=1.... NZU H 'E K=k
N 2
- yjl_[ kakT Wij. (10)
k=1 F

The above objective function does not have a closed-form solution,

S0 an iterative procedure (see Algorithm 1) is proposed to solve it.
Its mode-n objective function can be written in a trace form
as

arg'rjni‘p](Un, Vi) = Z 107 Xy O — Vi Y Vi 13w
A 7

T ~
(U] Xl 0
V.| |0 Y, Vs

~ T
D;®I -WeI|[Xm0:, 0 U,
[ D, ®I Mo Yo Vo | [Va]) (1n)

-W' I
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Table 1
Similarity relationship between X; and X;.

Side information wij = {1’ (i, 4} e €

0, else

vec(X;)-vec(X;
Cosine similarity Wy = {4\\vec()()\|\\vec(7;'(j)\\ ifx e Nk( )orX e N (X))

0, else

Gaussian similarity ~ w;; = {0 else

exp (~[|vec(x;) — vec(x)[1%/t). if X; € N (X;)orX; € Ni(%)

&; and X; belong to the identical individual C.

vec(-) denotes a vectorization operator. Ni(-) denotes k nearest neighbour.

t denotes Gaussian variance parameter.

Table 2
The criteria, the alignment representation and the objective function used in the proposed framework.
Criteria Alignment representation Objective function for mode n
Coupled multi-linear locality-preserved ?:N@r I® I I;W®®l li| arg{,“i‘? b3 U] Xin U — VY Vi 1205
criterion (CMLP) L 2 -V i
o ) D 1 b W o U7 X U=V Y V[
Coupled multi-linear marginal fisher ?;,-V%I | ]-)W®ili| |:D{7V%I | f)W@;l] arg min = Hu xL 5 v‘v“ )v I %
criterion (CMMF) L ® 2 ® -W'e , ® UV Y, 10 Xi Un=V] Yy Vil
i(NCHUIX{;)UH U, 0,2
M- _ 1 (eeT SNV YV — VY V12
Coupled multi-linear discriminant :) Kol :)_ Ko I] [:)(®l w(ee) ol :’(@ - 1(ee™) ® I] arg max— - eIV ¥y Vi nll7
analysis criterion (CMDA) L M -V ) Z HUIXI((Cn))Un UIXE,?)UnHZ
£l=
- +_z1 [\AR S VARR AR e A
j=
where X = [Xi Xo(ny- - Xum ] Y =

Algorithm 1: Projection of cross-view gaits with CMLP crite-
rion.

Input: Two sets of training gait tensor samples
{A; e RifvHexHy = 1,2, M} and
{yj e RbixbaxxIy § =12 . .,M} from two views 6
and ¥, dimensionality of the transformed gait tensor
F, x F x --- x Fy, the maximum iteration Tpax;
Output: The projection matrices (Up,Vy),n=1,...,N, the
aligned tensors {4; e RFi*<fv i=1, .. M} and
{Bj e RFfv j=1,. .. M}
1 Initialize U(O) =1y, V(O) =I,.n=1,.
superscript denotes iteration number,
2 Calculate W, Dy, D, according to Table 1 and (12);
3 while not converged or t <= Tpax do
4 for mode n=1:N do

., N, where their

5 Calculate
Xi(n)ﬁrg_l)¢n/¥ixl (Ugt))T' -
-1 -1
] i 1<U;)1>Txn+1 W)U,

i O =n i (V)T <v<>1)T

e (V)T (ij T

7 Calculate aux1|iary matrices X,y and Y, in (11), Zy,
and G in (13);

8 Calculate the eigenvalues and eigenvectors of

2y GZ],p® = A(Z(H)Z(Tn))p(t) and

t T t t t
PO = [w®)T  w©)T] = [pm L™ >]
. (nt) ) (n.t)
where the eigenvectors p;~’, p; N
corresponding to F, smallest eigenvalues;
9 end
.
10 | Check convergence YN, [l [P (Pff’”*) '—l <e.

1 end
12 Project the high-dimensional gait tensor to matrices
(Un,Vy),n=1,...,N, and obtain the low-dimensional tensors

Ai = X,-xlUlszU; - XNUE and B]' = ij]VIXZV;— ---XNVE;

[Yin): Y2y - -» Ymmy], ® denotes Kronecker product, and I
Is a unit matrix, similarity matrix W is made of wj;, and diagonal
matrices D; and D, are

ZjW]j 0 0 ZiW“ 0 0
Di=1o .0 D2= 19 0
0 0 > W 0 0 > iWim

(12)

The detailed mathematical deductions of (11) are put into the
Appendix B.
To simplify (11), several auxiliary matrices are defined as fol-

lows
U, XmU: 0
Z — (n)%¥n .
["] " [0 Y(n)"n}

c [m ol —w®1} (13)

P,

W'l D,®I
Hence, we have the following objective function for mode-n
{Pi,n=1,...,N} = argmmTr(PTz(n)Gz(n)Pn), (14)

where P} denotes the optimal solution for mode-n. Therefore,
(11) has been decomposed into N different sub-optimization prob-
lems although 2N optimized variables are coupled in a single ob-
jective function.

With the orthogonal constraints introduced into the (14) to

make {P;,n=1,..., N} unique, we derive
Pi,n=1,...,N} =ar mmTr P'Z./GZ|

{ } & ( (M™% (n) ) (15)
st. PP, =1,

where e Rf*fr s a unit matrix, e e R2MKnx1 js 3 column vec-
tor of ones, K, = Fy;q x --- x Fy x F_1 x --- x Fj, the size of a col-
umn vector of zeros 0 is F, x 1. The solution of (15) are listed in
Appendix C.

4.2. Coupled multi-linear marginal fisher criterion (CMMF)

We proposed CMMF criterion to encode the intra-class com-
pactness and inter-class separability with local relationships. As a
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result, for each mode n, the objective function is

{Up,Vi,n=1,...,N} = argmin
U, Vp,n=1,...N
2 -
S, 12207 Uy = YV - Vg g (16)
2.~
Zni;énj ”A‘)leU;r e ><NUN - ijlv;r T XNVE”FWU

where 7r; and 7; denote the class labels of samples i and j, w;;
denotes the similarity of intra-class gait data, and Wi]. denotes the
similarity of inter-class gait data, which are defined as
Wi = 1,if ieN,:(j) or jeNk*l(i)’

J 0, else

(17)

~ Lif ieNg (j) or ]GN(I)
i =)0, else

where N,jl(-) denotes a set of k; intra-class nearest neighbours,
and Nk‘2 (-) denotes a set of k; inter-class nearest neighbours.

Like CMLP, the alternating projection optimization procedure
can also decompose (16) into N sub-optimization problems as fol-
lows

Yo, | Un Xin)Un = VI Y0y Vi[5
arg mmJ(Un,Vn) = - ~ - ST (18)
Un. Vi Zn#rrj ”Unxi(n)Un*van(n)vn“FWij
n=1,...,N.

Eq. (18) can be rewritten as

arg lrjni‘;lj(Un, Vy)

The above problem can be converted to solving the generalized
eigen-decomposition problem. As a summary, the iterative proce-
dure for the projection of cross-view gaits with CMMF criterion is
presented in Algorithm 2.

4.3. Coupled multi-linear discriminant analysis criterion (CMDA)

General tensor discriminant analysis (GTDA) is a linear discrimi-
nant analysis extended in the tensor space, which introduce super-
vised information into multi-linear analysis. Motivated by GTDA,
the mode n intra-class scatter and inter-class scatter matrices in
the projected tensor space are defined as follows:

c=1 \i=1

Jw(Un, Vi) = Z (Z ”UTXI((Cig) UTXE;))Un”fZ-“

(¢ ) ()] 2
+ Z IV Y5 Vn VTY&)""”F)’
C - ~ - ~
Jo(Un, Vi) = 3 (Nl U5 X 00 — U X, Tn 17
c=1
+ NlIVIY )V — VIV, Vi 12), (24)

: (19)

T ~ - - ~ T
Tr U, X(n) U, 0 . D]_® | ?W Q1 X(n)Un 0 ~ U,
Vn 0 Y(n)v(n) —WT ® I D2 ® I 0 Y(n)V(n) vn
= T ~ ~ ~ ~ T
Tr U, X(H)Un 0 B D1~® I :W 1 X(n)Un 0 . U,
V, 0 Y(n)V(n) W'l Dl 0 Y(n)V(n) Vi

where W and W are intra-class similarity matrix and inter-class
penalty similarity matrix respectively and both of their ith row jth
column elements are w;; and vT/l.j. Four diagonal matrices D, D,

D; and D, are

(S 0 0 YW 0 0
Di=1g 0 D=1y 0
_0 ZjWM] _0 0 ZiWiM
_Zj le 0 0 ] _Zi ~11 0 0 )
D, = 0 0 D, = 0 o . (20)
_0 0 Z:]VTIM]_ _o 0 ZIW

To simplify (19), two alignment matrices are defined as follows

- |[D; eI -Wel| ~ [D, ol -Wal
G= _ G=| L ~ 21
[—WT@)I D2®I]’ |:—WT®I D2®I] (21)
Then, (19) reduces to
Tr(P}ZGZ
argminJ(Py) = M (22)
P, Tr(PIZwGZ/, Pn)

Like CMLP, a regularizer tl, which can be viewed as a small dis-
turbance, can be also imposed on the item G to avoid over fitting.
Then we have the following criterion

Tr(P Z(n)GZ(n) )
Tr (PTZ(n)(G—i— tl)Z(n)Pn) '

argminJ(Py) = (23)

where Xf;)) YE?) are the means of samples from the class ¢ from

two views 6 and 9, respectively, )-((n) and Y(n)’ are the means of
total data sets from two views 6 and 4 respectively.

_ 1S,
© _ © O © - ©
Xm = szmr Yoy = Ne ZYJ(”)’ X = C Xl:xm)’
j=1 =
1550
v, v(C
Yoy = ¢ ;Y(n). (25)

Again we wish to construct a large scalar when the mode n intra-
class scatter is small and the mode n inter-class scatter is large.

{U;. Vi)
Jo(Un, Vi)
= argmax —————
v (U, Vi)

C PN - o~
> (NelUFRE O — UTX 12 + NIVEY )V = VI Y ValI2)

& (m) (m)

C Nc
> (z 170, 0, - U017+ IV B -

©) 2
1 AT
=

n=(n)

(26)

(26) can be rewritten as
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Algorithm 2: Projection of cross-view gaits with CMMF crite-
rion.

Input: Two sets of training gait tensor samples
{4 e RFxHcxHy = 1,2 M} and
{j e Rbvxlaxxb j=1,2,... M} from two views 6
and ¥, dimensionality of the transformed gait tensor
F xE x --- x Fy, the maximum iteration Tpax;
Output: The projection matrices (Up,V,),n=1,...,N, the
aligned tensors {A; € Rfix<fv i=1, ., M} and
{BjERFlX'”XFN,j=1 ’’’’’ M}'
1 Initialize U,ﬂo) =1ly,, Vﬁo) =I,.n=1,..., N, where their
superscript denotes iteration number;
2 Calculate W, Dy, D,, W, D; and D, according to (17) and (20);
3 while not converged or t <= Tpax do
4 | formoden=1:Ndo
5 Calculate
Xy 08V mn i (U)o (U )T
xna1 (UL )Ty (U7
Yi(n)ﬁng )<:n37j><1(V§t))T' : '><n—1(",(1t_)1)T
xni1 (V) T (V)T

)

n+1
7 Calculate auxiliary matrices Xy, Y(n) and Z;, as Step
7 in Algorithm. 1, G and G in (21);
8 Calculate the generalized eigen-decomposition problem

on (Zay(G+tl)Z],) "2, GZ],

(n) ()’
T
P =[O O] = [p" By 0]

where the eigenvectors pgn't), pé"'t), o pé':'t)

correspond to F, smallest eigenvalues;
9 end

10 | Check convergence ZL] <é&;

-
pO* (Pff’”*) ’ _1

1 end

Project the high-dimensional gait tensor to matrices
(Un,Vy),n=1,...,N, and obtain the low-dimensional tensors
.Al' = X,-xlU]szU; s XNUE and Bj = yj><1VI><2V2T s XNVE.

-
N

arg Irjm‘;l.] (Un, V)

- U] [Xw0, © I-Kel 0
Vi | |o YoV || 0 I-Kel

~ T
Xol: 0 1'[u,
0 YV | [V

Then, (27) reduces to

Tr(Py Z()GZ/, Pn)

Tr(Py z(n)cfz(Tn)Pn) ’

argminJ(Pn) = (29)

The above problem can be converted to solve the generalized
eigen-decomposition problem. As a summary, the iterative proce-
dure for the projection of cross-view gaits with CMDA criterion is
presented in Algorithm 3.

4.4. Analysis

Complexity analysis. For all of the three criteria, the time com-
plexity includes three aspects: n-mode projection in step 5 of
Algorithms 1 and 2, step 4 in Algorithm 3, the scatter cal-
culation and general eigenvalue decomposition. In each itera-
tion, the time complexity of the n-mode projection and gen-
eral eigenvalue decomposition can be respectively computed by
OM YNy H2Hy +12L0) and O(XN_; (Hq+Ln)?) for all the three
variations, where H, = H:'V:Li#nHi and L, = H{.":”#Li. For CMLP,
the complexity to compute the scatter matrices in the optimiza-
tion procedure is O(Zf\’:1 2MK;, (Hp + L) MK, + Hp + Lp)). CMMF
and CMDA consider both inter-class scatter and intra-class scat-
ter, which double the computation cost, i.e., O(Zf":1 4MK;, (Hy +
Ly)(2MKy, + Hp + Ly)). For simplicity, we assume that H, =L, =
(TI_; H)V" = ([N, Lp) V" =1, thus the computing complexity
of CMLP can be denoted as O(2MN.IN+D 4 8N .3 + 8MNI(M -
F(N—1)+1I)«F(N—1)) where it is assumed the dimensionality
of transformed tensor VF, =F,n=1,2,..., N. Similarly, CMMF and
CMDA double the computational complexity.

Relationship analysis. All of the proposed three variations under
the unified framework aim to learn a shared multi-linear subspace
in which the data biases caused by view differences are allevi-
ated. Then, gait across different views can be directly measured in
the shared subspace. However, the three criteria construct different
manifold structure in the subspace. As in Table 2, different align-
ment representation are embedded into the manifold graph, which
makes the subspace discriminable. In detail, CMLP constructs a
graph incorporating neighbourhood information across gait views
spanned on the dataset. From perspective of Laplacian, we asym-

(U Xw0n 0 Kel-L(ee)ol 0 XwO, 0 "Tu,
Vil |0 Y Viny || O Keol—jee")oI||0 Yoy Vny | | Vn

The detailed mathematical deductions of (27) are put into the
Appendix D.

To simplify (27), several auxiliary matrices are defined as fol-
lows

(U X0, ©
P,=|."|2Z,=|"m"n N
! _v"]’ ® [0 Y Vn |
[1-KeI 0
G=1o l—K®Ii|’
, [Kel-1lee)al o0
G = 0 Kel- e ol| (28)

metrically map the tensor data points from different gait views
into a shared subspace by a couple of multi-linear projection ma-
trices, which the multi-linear transformation optimally preserves
local neighbourhood structure in the shared subspace. CMMF also
blurs the data bias across views by optimally learning asymmet-
rical projections based on local neighbourhood information. How-
ever, CMMF is a multi-linear tensor discriminative model, which
encodes both the intra-class compactness and inter-class separabil-
ity with local neighbourhood relationships in the manifold. CMDA
is also a discriminative model which make the samples from the
same class compact and samples from the different class separate
in the shared subspace. In contrast to CMLP and CMMF, CMDA en-
codes not only local neighbourhood information but also global re-
lationships between classes. Though the three criteria follow the
same framework, each of them build unique manifold.
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Algorithm 3: Projection of cross-view gaits with CMMF crite-
rion.
Input: Two sets of training gait tensor samples
[ e RFfxHcxHy =12 M} and
{j e Rbvlaxxby j=1,2,... M} from two views 6
and ¥, dimensionality of the transformed gait tensor
F x E x -+ x Fy, the maximum iteration Tpax;
Output: The projection matrices (U,,V,),n=1,...,N, the
aligned tensors {A4; € Rfixfv i=1, ., M} and
{BjERFlX"'XFN,jzl ’’’’’ M}:
1 Initialize U,go) = lHn,V,gO) =I,.n=1,..., N, where their
superscript denotes iteration number.
2 while not converged or t <= Tpax do
3 | for moden=1:N do
4 Calculate
x;‘(n)ﬁr(1F1)<:nXiX1 (Ugt))T cr Xp—1 (U,(f,)] )T
e (U Ty (U D)T
Yi(n)ﬁr(th)@nijl (V§”)T- “Xpoq (V,(f,)1 )T
e (V)T oy (V)T

)

6 Calculate auxiliary matrices Xs), Y(n), Z(n), G, G in
(28);
7 Calculate the generalized eigen-decomposition problem
-1
on (Zy (G +tN)Z[,) ' Zw)GZ ],
) T it it it
P = [T W] = [ e pf
: (nt) _(n.t) (n.t)
where the eigenvectors py ', p, ... Py,
correspond to F, smallest eigenvalues;
8 end
N )+ ((p(t—T1)= T
9 | Check convergence > ,_; [||Pn (Pn ) -Ij| <&
10 end
1 Project the high-dimensional gait tensor to matrices
(Up,Vp),n=1,...,N, and obtain the low-dimensional tensors

A= X,’X1UIX2U;— XNUE and Bj = ij]VIXZV;— "'XNVE-

5. Experiments

In this section, the effectiveness of the proposed framework is
assessed by extensive experiments conducted on two databases:
(1) CASIA(B) gait database and (2) OU-ISIR large population gait
database. Videos/images in both databases are collected from
multi-view cameras; therefore they are most applicable to evalu-
ate the performance of cross-view gait recognition. For each gait
sequence, we use dual-ellipse fitting approach [53] to detect gait
periodicity. Then, we adopt gait energy image (GEI) [54] as the gait
feature in a gait cycle. After that, GaborD-based, GaborS-based and
GaborSD-based gait representations [45] are used as recognized
feature. GaborD and GaborS features are respectively obtained by
the direction summation and scale summation of Gabor features,
and GaborSD feature is obtained by both direction and scale sum-
mation of Gabor features. For these three gait representations, the
dimension of MPCA is chosen according to a 98% energy crite-
rion as in [43]. Furthermore, the proposed three criteria of tenso-
rial coupled mappings are used for extracting features. Finally, the
nearest neighbour classifier is used for classification.

5.1. Databases

5.1.1. CASIA(B) gait database
The CASIA(B) gait database contains 13,640 sequences of 124
subjects. For each subject, gaits are recorded by the cameras from

11 views, i.e., 0° 18° 36°, 54°, 72°, 90°, 108°, 126°, 144°, 162°,
and 180°. There are 10 gait sequences for each subject: 6 sam-
ples under normal condition, 2 samples walking with coats and
2 samples carrying bags. Since the samples of walking with coats
and carrying bags are too limited to calculate intra-class scatter,
all the 6 samples containing normal walk for each subject are se-
lected for the experiments in this paper. These normal walk sam-
ples are divided into training and testing sets, and the first 64
subjects are used for training and the rest 60 subjects are used
to test the performance of gait recognition approaches under the
view change. All the GEIs are cropped and normalized to 64 x 64
pixels. Fig. 1 shows the GEIs from 11 viewing angles. After Gabor
filter with the above-mentioned 5 scales and 8 directions, the sizes
of GaborD-based, GaborS-based and GaborSD-based gait features
are 64 x 64 x 8, 64 x 64 x 5 and 64 x 64, respectively.

5.1.2. OU-ISIR large population gait database

The OU-ISIR large population gait database has been released
recently. It contains 1912 subjects whose gait sequences are cap-
tured from 4 different observation angles of 55°, 65°, 75° and 85°.
We randomly divide OU-ISIR gait database into two sets equally
for 5 times. Therefore, 956 subjects compose the training set, and
the rest 956 subjects make up the testing set. In our experiments,
the size of GEls is aligned to 64 x 44 pixels. Fig. 2 shows GEls
from 4 different views. Compared with the CASIA(B) database, this
database contains more subjects with wider range of age variations
but narrower range of view variations. The sizes of GaborD-based,
GaborS-based and GaborSD-based gait features are 64 x 44 x 8,
64 x 44 x 5 and 64 x 44 respectively in our experiments.

5.2. Performance evaluation

5.2.1. Evaluation on the CASIA(B) gait database

In this section, we evaluate the effectiveness of the pro-
posed GaborD-CMLP, GaborD-CMMF, GaborD-CMDA, GaborS-CMLP,
GaborS-CMMF, GaborS-CMDA, GaborSD-CMLP, GaborSD-CMMF and
GaborSD-CMDA using the CASIA(B) gait database. The numbers of
iteration of CMLP, CMMF and CMDA are all set to 5. For fair com-
parison, the recognition accuracies with optimal parameters are re-
ported. Table 3 illustrates the recognition rates of probe view 54°,
It can be seen that when the difference increases between the
probe and the gallery sample is 18°, the recognition rates of the
proposed 9 methods, are above 90%, and the recognition rate of
each method is very close. In addition, the recognition rates de-
crease as the view difference between the gallery and probe views,
but slow down the downward trend at a symmetrical gallery view
angle.

We compare the proposed methods with state-of-the-art cross-
view gait recognition methods including GEI [54], CMCC [31],
VIM+QM [23], SVD [24], SVR [32], MvDA [55] and GEI + Deep
CNNs [40]. GEI is a kind of spatial-temporal template, which is
the state-of-the-art feature representation in gait recognition. We
utilized GEI to characterize gait patterns in all of the compared
approaches. For CMCC, the computing complexity includes four
parts, i.e., bipartite graph modelling, bipartite graph multiparti-
tioning, correlation optimization by CCA and linear approxima-
tion processes, which take O(MI2), O(I?), O((I')?) and O(MI), respec-
tively, where I’ is the dimension of the GEI segment. The com-
plexity of VTM+QM and SVD is dominated by SVD factorization,
which is O(2M2I). For SVR, the complexity is related to the num-
ber of support vectors Sy, which is O(S3 + MS2 + MIS,) with upper
bound O(M?3I). For MvDA, computational costs are mainly from ma-
trix inversion and eigenvalue decomposition, and both are O(8P3).
Table 3 tabulates comparison results under Probe view 54°. As
shown in Table 3, the proposed methods consistently outperform
other state-of-the-art methods. The average recognition rate of the
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Fig. 1. GEIs from the CASIA(B) database.

Table 3

Comparison on various methods on CASIA(B) under Probe view 54° (the best record under each Gallery
view is marked in bold, the second best is marked by underline ’_").

Gallery view 0° 18 36° 720 90°  108° 126° 144° 162°  180°
GEI [54] 004 009 030 022 018 017 038 019 002 003
CMCC [31] 024 065 097 095 063 053 048 034 023 022
VIM+QM [23] 021 067 096 097 070 066 039 033 020 022
SVD [24] 013 046 087 081 049 031 027 019 018 016
SVR [32] 022 064 095 093 059 051 042 027 020 021
MVDA [55] 028 070 098 097 072 068 053 042 025 028
GEI+CNNs [40] 05 067 099 099 093 090 079 073 063 062
GaborD-CMLP 037 078 099 097 082 069 064 055 033 032
GaborD-CMMF 043 072 099 098 082 071 066 056 037 030
GaborD-CMDA 031 051 092 086 057 058 053 030 025 025
GaborS-CMLP 038 074 099 097 079 073 073 051 038 033
GaborS-CMMF 042 078 099 098 081 076 065 053 037 035
GaborS-CMDA 031 066 096 095 074 061 061 042 034 029
GaborSD-CMLP 036 070 098 096 082 073 070 057 037 033
GaborSD-CMMF 037 072 099 098 081 077 076 057 042 033
GaborSD-CMDA 025 052 093 090 064 059 054 042 039 029

Fig. 2. GEIs from the OU-ISIR database.

proposed methods is 14%, 13%, 27%, 16% and 7% higher than CMCC,
VTM+QM, SVD, SVR and MvDA. Particularly, the proposed methods
achieve more remarkable increase under large view differences.
Compared to GEI + CNNs, the proposed approaches achieve equiva-
lent performances under small view variance, i.e., 18°. But, the per-
formances of the proposed approaches are still posterior when the
view differences are enlarged. Though GEI + CNNs achieves bet-
ter performances, it demands large volume of labelled data and
high computational costs which is not practical in gait recogni-
tion. In contrast, our proposed approaches overcome the draw-
backs which aims at small size sample problem and reduces de-
pendences on computational sources. Especially, our framework
can achieve equal performance under small view variances.

5.2.2. Evaluation on the OU-ISIR large population gait database

Since OU-ISIR gait database contains two gait sequences per
subject, each query subject’s one angle view GEls are used as
gallery samples, and GEIs under other angle view are used as query
samples. We repeat the experiment by swapping the samples in
the training and testing sets, therefore, we test the recognition
rates for 10 times for each cross-view as [55]. The average recog-
nition rates over these 10 runs are reported in this paper.

We evaluate the accuracies of the proposed GaborD-CMLP,
GaborD-CMMF, GaborD-CMDA, GaborS-CMLP, GaborS-CMMEF,
GaborS-CMDA, GaborSD-CMLP, GaborSD-CMMF and GaborSD-
CMDA, and also the effect of view angle variations. Table 4
illustrates the recognition rates with the gallery view and probe
view of 55°, 65°, 75° and 85°. We observe that the recognition
rates decrease monotonically as the view difference between the
gallery and probe views. The lowest recognition rate can reach
more than 96% even when the maximum view difference is 30°
(85° —55°).

We also compare the proposed methods with those above-
mentioned state-of-the-art cross-view gait recognition methods
using OU-ISIR database. Because the performance results of the
proposed method are very close, the data is retained to the
third digit after the decimal point, which is easier to distin-
guish between the pros and cons of them. Namely, we report
the results accurate to one-thousandth for the OU-ISIR database.
Table 4 presents the results in terms of recognition rate for the
different methods. We can see that the proposed methods yield
average increases of 13%, 17%, 19%, 20% and 5% as compared to
CMCC, VTM+QM, SVD, SVR and MvDA. These results, again, cor-
roborate the useful tensor representation framework in addressing
the cross-view gait recognition. It worth to point out that the pro-
posed approaches achieve slightly prior performance compared to
GEI + CNNs. This verifies the conclusion on CASIA(B) dataset that
the proposed framework is effective when view difference is rele-
vant small.

5.2.3. Ablation study

In this section, we evaluate the effectiveness of each compo-
nent, i.e., Gabor-based features and tensor-based coupled metric
learning framework. Fig. 3 compares identification accuracies ver-
sus various tensorial coupled mapping methods using GEI and
Gabor-based features on OU-ISIR large population gait dataset. We
show the recognition results of various gallery views under fixed
probe view 75° in sub-figure (a)-(c). From the figures, it can be
seen that Gabor-based features achieve superior performances than
GEI in most cases when the tensorial coupled mapping approach is
fixed. This verifies that Gabor-based feature features boost the per-
formances compared vanilla GEL It is reasonable since Gabor-based
features are learned from GEIs and sensitive to gait pattern varia-
tions. The conclusion is also verified in many deep learning studies
[56,57], and they prove that CNN learns Gabor features in shallow
layers.

Fig. 4 illustrates the effectiveness of the proposed tensorial cou-
pled mapping framework. Sub-figure (a)-(c) show the recognition
results of various gallery views, i.e., 55°, 65° and 85°, when the
probe view is set to 75°. It is easy to observe that the proposed
approaches under the unified tensorial coupled mapping frame-
work outperform the deep CNNs with a large margin when com-
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Table 4

Comparison on various methods on OU-ISIR (the best record under each gallery view is marked in bold, the second best is marked

by underline '_").

Probe view (°) 55 65 75 85
Gallery view (°) 65 75 85 55 75 85 55 65 85 55 65 75
GEI [54] 0284 0.058 0277 0277 0670 0.195 0507 0.640 0969 0.262 0207 0.969
CMCC [31] 0968 0.785 0646 0974 0963 0.826 0800 0975 0969 0749 0785  0.965
VIM+QM [23] 0.941 0.704 0491 0957 0966 0785 0.756 0971 0964 0.555 0838 0.978
SVD [24] 0932 0.704 0523 0923 0936 0.771 0774 0940 0947 0523 0763 0.925
SVR [32] 0936 0.710  0.531 0940 0943 0720 0753 0943  0.941 0.511 0.711 0.938
MvDA [55] 0975 0922 0858 0974 0984 0949 0925 0984 0985 0.877 0957 0.988
GEI+CNNs [40] 0983 0960 0805 0963 0973 0.833 0942 0978 0.851 0900 0960 0.984
GaborD-CMLP 0999 0990 0972 1000 1.000 0.996 0989 1000 0995 0.969 0996 1.000
GaborD-CMMF 0998  0.991 0970 1000 1.000 0.996 0990 1000 0999 0.971 0994  1.000
GaborD-CMDA 0998 0992 0967 1000 1.000 0.995 0.991 1.000 1000 0967 0994 1.000
GaborS-CMLP 0999 0.992 0971 1.000 1000 0997 0993 1.000 1000 0972 099 1.000
GaborS-CMMF 0999 0992 0972 1000 1.000 0997 0993 1000 1.000 0.970 0997 1.000
GaborS-CMDA 0998 0989 0968 1000 1.000 0.997 0990 1000 1.000 0.963 0997 1.000
GaborSD-CMLP 0998 0.989 0971 1.000 1000 0997 0975 1.000 1000 0970 0.993 1.000
GaborSD-CMMF  0.999  0.991 0965 1.000 1.000 0.996 0987 0.999 1.000 0.966 0994 1.000
GaborSD-CMDA 0998 0.984 0967 1000 1.000 0.994 0988 1000 1.000 0964 0994 1.000
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Fig. 3. A comparison of different features on the OU-ISIR database.
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Fig. 4. An illustration of the proposed tensorial coupled mapping framework with Gabor-based features on the OU-ISIR database.

bining with Gabor-based features. It demonstrates the effectiveness
of our proposed tensorial coupled mapping framework. In another
aspects, it exposes the shortage of deep CNNs that it is easy to
be overfitting when the training data is limited. In particular, gait
data is simple which also restricts the depth of deep CNNs [40].
It is worth to noting that GEI + CNNs achieves better performance
than Gabor-based features + CNNs as in Table 4. We believe that
the reason is two-fold: one is that data-driven learned filters using
deep CNNs are more appropriate than hand-crafted filters using
Gabor; the other one is that it is easier to overfit for Gabor-based
features than GEI when using the same depth CNN framework, be-
cause the deep CNNs learn Gabor features in shallow layers [56].

Thus it is appropriate to combine Gabor-based features and
the proposed tensorial coupled mapping framework together. Each
component improves performance of the whole gait recognition
system.

5.3. Discussion

Based on the comparative experiments on the CASIA(B) and
OU-ISIR gait databases, we discuss and analyse the effects of Ga-
bor gait representation and three criteria of tensorial coupled map-
pings.

(1) The experiments in Section 5.2 show that the GaborS-based
representation performs slightly better than GaborD-based
representations which somewhat outperforms the GaborSD
representation for cross-view gait recognition. This obser-
vation is consistent with [45]. GaborS and GaborD benefit
cross-view gait recognition with Gabor functions over scales
and directions representation.

(2) CMLP criterion has the ability to learn the essential gait
manifold structure. By minimizing the distance between gait
tensor data under two different observation angles for the
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identical subject, simultaneously suppressing the similarity
of different subjects, as defined in (10), CMLP algorithm
can enlarge the discrimination between different subjects,
and meanwhile compact the variations of the same subject.
Therefore, GaborD-CMLP, GaborS-CMLP and GaborSD-CMLP
generally achieve good performance.

(3) CMMF criterion minimizes the ratio of intra-class similar-
ity to the inter-class similarity, which ensures the intra-
class compactness and inter-class separability. Compared
with CMLP criterion, CMMF criterion relies on Fisher dis-
crimination which is more conducive to classification. There-
fore, CMMF criterion yields better recognition performance
than CMLP criterion.

(4) Due to the lack of constrained relationship between cross-
view gait tensor data, CMDA criterion is worst among the
three criteria. Still, it is far superior to other state-of-the-art
methods.

6. Conclusion

Cross-view gait recognition is a challenging task because the
appearance change caused by view variation. We handle this prob-
lem by designing a general tensor representation framework that
employs coupled metric learning from cross-view gait tensor data.
First, we use GaborD, GaborS and GaborSD to extract Gabor fea-
ture with different scales and directions from GEIs. To enhance
discrimination between different subjects, and meanwhile com-
pact the variations of the same subject, three criteria of tensorial
coupled mappings are proposed to project Gabor-based represen-
tations to a common subspace for recognition. Extensive experi-
ments conducted on CASIA(B) and OU-ISIR gait database demon-
strate the proposed methods are superior to other state-of-the-art
methods. Moreover the proposed methods achieve slightly prior
performance compared to GEI + CNNs when view difference is rel-
evant small. When view difference is large, the advantage of CNNs
may be more obvious. In the future, we will try a CNN represen-
tation framework to select view-invariant gait features for large
cross-view gait recognition.
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Appendix A. Similarity between .A; and B;
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Appendix B. Derivation of mode-n objective function of (11)

The mode-n objective function of (11) is obtained as follows:
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Appendix C. The solution of (15)

D2®I

i

Eq. (15) can be solved by a generalized eigen-decomposition of

ZGZ P = MZwZy )P (C1)

Taking the eigenvectors p%”),pén),...,pg:) corresponding to

Fn (Fy < max(Hp, L)) smallest eigenvalues Ag") < )»g” <. < )»I(E:),
the optimal solution of (22) can be represented as

u ) om )
”:Bﬂ=mvm~~%} (€2)
Z(n)Z%) is usually non-invertible. In order to eliminate the singu-

larity and to avoid over fitting, a regularizer tI is imposed on the
item Z(n)Z(Tn), where I e RHntln)x(Hntln) and is a small positive
constant, such as T = 10~% used in this paper. P, can be divided
into two matrices U, and V,. U, corresponds to the 1st to Huth
rows of P, and V, corresponds to the (H, + 1)th to (H, + L;)th

rows of P,.

Appendix D. Derivation of the mode-n objective function of
(27)

The denominator of (26) can be rewritten as
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Thus, the alignment expression is obtained as J (Up, V) =
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The numerator of (26) can be rewritten as
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Thus, the alignment expression is obtained as follows
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So the objective function for mode n can be expressed as (27).
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