Print

发布时间: 2020-10-16
摘要点击次数:
全文下载次数:
DOI: 10.11834/jig.200243
2020 | Volume 25 | Number 10




    计算机断层扫描图像    




  <<上一篇 




  下一篇>> 





鼻咽癌原发肿瘤放疗靶区的自动分割
expand article info 薛旭东1,2, 郝晓宇3, 石军3, 丁轶1, 魏伟1, 安虹3
1. 湖北省肿瘤医院肿瘤放疗科, 武汉 430079;
2. 中国科学技术大学附属第一医院(安徽省立医院) 肿瘤放疗科, 合肥 230001;
3. 中国科学技术大学计算机科学与技术学院, 合肥 230026

摘要

目的 放射治疗是鼻咽癌的主要治疗方式之一,精准的肿瘤靶区分割是提升肿瘤放疗控制率和减小放疗毒性的关键因素,但常用的手工勾画时间长且勾画者之间存在差异。本文探究Deeplabv3+卷积神经网络模型用于鼻咽癌原发肿瘤放疗靶区(primary tumor gross target volume,GTVp)自动分割的可行性。方法 利用Deeplabv3+网络搭建端到端的自动分割框架,以150例已进行调强放射治疗的鼻咽癌患者CT(computed tomography)影像和GTVp轮廓为研究对象,随机选取其中15例作为测试集。以戴斯相似系数(Dice similarity coefficient,DSC)、杰卡德系数(Jaccard index,JI)、平均表面距离(average surface distance,ASD)和豪斯多夫距离(Hausdorff distance,HD)为评估标准,详细比较Deeplabv3+网络模型、U-Net网络模型的自动分割结果与临床医生手工勾画的差异。结果 研究发现测试集患者的平均DSC值为0.76±0.11,平均JI值为0.63±0.13,平均ASD值为(3.4±2.0)mm,平均HD值为(10.9±8.6)mm。相比U-Net模型,Deeplabv3+网络模型的平均DSC值和JI值分别提升了3%~4%,平均ASD值减小了0.4 mm,HD值无统计学差异。结论 研究表明,Deeplabv3+网络模型相比U-Net模型采用了新型编码—解码网络和带孔空间金字塔网络结构,提升了分割精度,有望提高GTVp的勾画效率和一致性,但在临床实践中需仔细审核自动分割结果。

关键词

自动分割; 放射治疗; 卷积神经网络; 原发肿瘤放疗靶区; 鼻咽癌

Auto-segmentation of high-risk primary tumor gross target volume for the radiotherapy of nasopharyngeal carcinoma
expand article info Xue Xudong1,2, Hao Xiaoyu3, Shi Jun3, Ding Yi1, Wei Wei1, An Hong3
1. Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan 430079, China;
2. Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China;
3. School of Computer Science and Technology, University of Science and Technology of China, Hefei 230026, China
Supported by: National Natural Science Foundation of China (11704108);Natural Science Foundation of Anhui Province, China (1808085QH281)

Abstract

Objective Nasopharyngeal carcinoma (NPC) is a common head and neck cancer in Southeast Asia and China. In 2018, approximately 129 thousand people were diagnosed with NPC,and approximately 73 thousand people died of it. Radiotherapy has become a standard treatment method for NPC patients. Precise radiotherapy relies on the accurate delineation of tumor targets and organs-at-risk (OARs). In radiotherapy practice,these anatomical structures are usually manually delineated by radiation oncologists on a treatment-planning system (TPS). Manual delineation,however,is a time-consuming and labor-intensive process. It is also a subjective process and,hence,prone to interpractitioner variability. The NPC target segmentation is particularly challenging because of the substantial interpatient heterogeneity in tumor shape and the poorly defined tumor-to-normal tissue interface,resulting in considerable variations in gross tumor volume among physicians. Auto-segmentation methods have the potential to improve the contouring accuracy and efficiency. Different auto-segmentation methods have been reported. Nevertheless,atlas-based segmentation has long computation time and often could not account for large anatomical variations due to the uncertainty of deformable registration. Deep learning has achieved great success in computer science. It has been applied in auto-segmenting tumor targets and OARs in radiotherapy. Studies have demonstrated that the deep leaning method can perform comparably with or even better than manual segmentation for some tumor sites. In this work,we propose a Deeplabv3+ model that can automatically segment high-risk primary tumor gross target volume (GTVp) in NPC radiotherapy. Method The Deeplabv3+ convolutional neural network model uses an encoder-decoder structure and a spatial pyramid pooling module to complete the segmentation of high-risk primary tumor from NPC patients. The improved MobileNetV2 network is used as the network backbone,and atrous and depthwise separable convolutions are used in the encoder and decoder modules. The MobileNetV2 network consists of four inverted residual modules that contain depthwise separable convolution with striding to extract feature maps at arbitrary resolutions via atrous separable convolution. Batch normalization and ReLU activation are added after each 3×3 depthwise convolution. The decoder module of this network is as follows: the encoder features are first bilinearly upsampled by a factor of 4 and then concatenated with the corresponding low-level features from the network backbone with the same spatial resolution. We perform a 1×1 convolution on the low-level features to reduce the number of channels. After concatenation,several 3×3 convolutions are used to refine the features,followed by another bilinear upsampling by a factor of 4. Our training and test sets consist of the CT images and manual contours of 150 patients from Anhui Provincial Hospital between January 2016 and May 2019. The dimension,resolution,and thickness of CT images are 512×512,0.98 mm,and 2.5 mm,respectively. To delineate the tumor region efficiently,T1-weighted MR images are also acquired and fused with CT images. GTVp is delineated by experienced radiation oncologists on the CT images in a Pinnacle TPS. Of the 150 patients,120 are chosen as the training set,15 patients are chosen as the validation set,and the remaining 15 patients are chosen as the test set. Images are flipped,translated,and randomly rotated to augment the training dataset. Our network is implemented in Keras toolbox. The input images and ground-truth contours are resized to 512×512 for training. The loss function used in this study is 1-DSC index,AdamOptimizer is used with a learning rate of 0.005,and the weight decay factor is 0.8. The performance of the auto-segmentation algorithm is evaluated with Dice similarity coefficient (DSC),Jaccard index (JI),average surface distance (ASD),and Hausdorff distance (HD). The results are compared with those of the U-Net model. Paired t-test is performed to compare the DSC,JI,ASD,and HD values between the different models. Result The mean DSC value of the 15 NPC patients from the test set is 0.76±0.11,the mean JI value is 0.63±0.13,the average ASD value is (3.4±2.0) mm,and the average HD value is (10.9±8.6) mm. Compared with the U-Net model,the Deeplabv3+ network model shows improved mean DSC and JI values by 3% and 4%,respectively (0.76±0.11 vs. 0.73±0.13,p < 0.001; 0.63±0.13 vs. 0.59±0.14,p < 0.001). The mean ASD value is also significantly reduced (3.4±2.0 vs. 3.8±3.3 mm,p=0.014) compared with the U-Net result. However,for HD values,no statistical difference exists between the two network models (10.9±8.6 vs. 11.1±7.5 mm,p=0.745). The experiment results indicate that the Deeplabv3+ network model outperforms the U-Net model in the segmentation of NPC target area. As 2D visualizations of auto-segmented contours,the Deeplabv3+ model results have more overlap with the manual contours and are closer to the results of the "ground truth". The visualizations show that our model can produce refined results. In addition,the average time required to segment a CT image is 16 and 14 ms for our model and the U-Net model,respectively,which is much less than the manual contouring time. Conclusion In this study,a Deeplabv3+ convolutional neural network model is proposed to auto-segment the GTVp of NPC patients with radiotherapy. The results show that the auto-segmentations of the Deeplabv3+ network are close to the manual contours from oncologists. This model has the potential to improve the efficiency and consistency of GTVp contouring for NPC patients.

Key words

auto-segmentation; radiotherapy; convolutional neural network(CNN); primary tumor gross target volume (GTVp); nasopharyngeal carcinoma(NPC)

0 引言

世界卫生组织国际癌症研究机构发布的全球肿瘤2018报告(Ferlay等,2019)指出,鼻咽癌(nasopharyngeal carcinoma,NPC)位居世界癌症的第23位,每年新发病例12.9万人,死亡病例7.3万人。鼻咽癌以鳞癌最为常见,其常发于鼻咽侧壁和顶后壁,且颈部淋巴结转移发生早、转移率高。由于鼻咽部位治疗范围狭窄且危及器官众多,放射治疗是治疗鼻咽癌的主要方式之一。尽管鼻咽癌患者的肿瘤具有明显的放疗敏感性,但仍需要高剂量才能达到肿瘤控制的最佳水平。Ng等人(2014)的研究表明现代调强放疗的剂量不足仍然是影响治疗效果的重要因素之一。而制约放疗剂量的关键原因是放疗肿瘤靶区和相关危及器官的勾画。

在目前放射治疗实践中,鼻咽癌的肿瘤靶区结构通常由临床医生在放疗计划系统上手工勾画完成。在鼻咽癌放疗计划中,所有必要结构的手动勾画通常需要3 h左右(Kosmin等,2019)。手工勾画花费了医生的大量时间,极大增加了医生的工作负担,而且手工勾画也是一个非常依赖医生经验水平的主观过程。

自动分割方法具有提高勾画精度和效率的潜力。基于Atlas的方法(Delpon等,2016)是一种常用的分割技术,该方法使用形变配准将新图像与数据库中选定的一组轮廓进行匹配,但是该方法计算时间长,且由于不确定的形变配准不能解释人体器官的解剖变化等(Kosmin等,2019),限制了它的应用。以卷积神经网络(convolutional neural network, CNN)为代表的深度学习在计算机科学和医学领域取得了快速的进步。自动分割包括大脑、肝脏、直肠、膀胱和前列腺等器官(Litjens等,2017),以及多种模态的影像,如CT(computed tomography)(Men等,2017)、磁共振(magnetic resonance,MR)(Lin等,2019)和超声(Han等,2017)等。这些研究表明自动分割的性能可与手工勾画相媲美甚至更好。

然而,由于患者间肿瘤形状的异质性,以及肿瘤与正常组织界面的不明确性,通过深度学习自动分割鼻咽癌放疗靶区仍是一项挑战。本文拟通过Deeplabv3+卷积神经网络模型研究其对鼻咽癌原发肿瘤放疗靶区(primary tumor gross target volume,GTVp)自动分割的精度,并探讨其临床应用的可行性。

1 材料与方法

1.1 数据

本文回顾了2016年~2019年在安徽省立医院放疗科接受放射治疗的共计150例鼻咽癌患者CT图像资料,表 1给出了其分期和临床信息。约35.3%的局部晚期患者接受了诱导化疗后再行同步放化疗。其他患者(早期和中期患者)接受了放疗或同步的放化疗。所有患者均行仰卧位热塑体膜固定,使用西门子CT增强定位扫描(Somaton Definition AS 40,Siemens Healthcare, Forchheim, Germany)。CT大小尺寸为512×512像素,分辨率为0.98 mm×0.98 mm,扫描层厚为3 mm。为了更好地勾画肿瘤区域,将T1增强MRI图像与CT进行配准融合。所有患者的鼻咽癌原发灶GTVp均由主管医师在Pinnacle放疗计划系统上勾画后,由高年资上级医师审核批准,并交由物理师进行放疗计划设计。GTVp的勾画范围包括影像学及临床检查可见的原发肿瘤部位。同时,本文的GTVp部分包含了咽后淋巴结在内。

表 1 入组鼻咽癌患者的临床信息
Table 1 Demographics of enrolled NPC patients

下载CSV
临床特征 类别 数值(占比/%)
性别 112(74.7)
38(25.3)
年龄 中位值 52
范围 22.0~80.0
T分期 T1 11(7.3)
T2 23(15.3)
T3 79(52.7)
T4 37(24.7)
N分期 N0 8(5.3)
N1 41(27.3)
N2 84(56.0)
N3 17(11.3)
治疗方式 诱导化疗+同步放化疗 53(35.3)
单纯放疗或同步放化疗 97(64.7)

1.2 网络结构

使用Deeplabv3+网络结构(Chen等,2018),采用解码(encoder)-编码(decoder)结构和空间金字塔结构来完成鼻咽癌原发灶的分割任务(图 1)。以改进后的MobilenetV2网络为编码网络主体,并在编码模块和解码模块使用了深度分离卷积,如图 2所示。图 2中共有4种反向残差模块(见右图)。反向残差后的数字24-320代表输出通道数。此MobilenetV2由4种包含深度分离卷积的反向残差模块组成,目的是利用带孔分离卷积提取不同分辨率的特征图。本网络的解码模块将编码器的特征进行一个双线性上采样,采样倍数为4。

图 1 Deeplabv3+网络结构整体图
Fig. 1 Overall architecture of the proposed Deeplabv3+ network model
图 2 改进后的MobilenetV2网络为编码网络主体
Fig. 2 Improved MobilenetV2 network is used as the network backbone

1.3 训练过程

从150例患者中随机选择120例作为训练集,剩余的30例均分为验证集和测试集。医生的手动勾画作为网络模型学习训练的“金标准”。为了增加训练样本量,对训练图像进行了翻转、随机旋转、放大缩小和平移等数据增广处理。使用1-戴斯相似系数作为损失函数,优化器使用Adam,初始学习率为0.005,当训练指标连续5次没有改进时,学习率按照0.8的衰减系数进行衰减。训练轮次Epoch 200次,单次放入样本量Batch_size设置为8。卷积神经网络模型由Keras库(Gulli和Pal,2017)搭建,计算硬件包括Intel Xeon处理E5-2695 CPU和NVIDIA Tesla P40 GPU。

1.4 评估标准

采用戴斯相似系数(Dice similarity coefficient, DSC)、杰卡德相似系数(Jaccard index,JI)、平均表面距离(average surface distance,ASD)和豪斯多夫距离(Hausdorff distance, HD)来评估模型对测试集分割的精准度。DSC定义为预测轮廓$ \boldsymbol{A}$与真实轮廓$ \boldsymbol{B}$重叠的比例,即

$ \operatorname{DSC}(\boldsymbol{A}, \boldsymbol{B})=\frac{2|\boldsymbol{A} \cap \boldsymbol{B}|}{|\boldsymbol{A}|+|\boldsymbol{B}|} $ (1)

DSC介于0和1之间,其值越大,表明分割图像与手动勾画重合度越高。

JI为两个集合$ \boldsymbol{A}$$ \boldsymbol{B}$的交集元素在$ \boldsymbol{A}$$ \boldsymbol{B}$并集中所占的比例,即

$ JI(\mathit{\boldsymbol{A}}, \mathit{\boldsymbol{B}}) = \frac{{|\mathit{\boldsymbol{A}} \cap \mathit{\boldsymbol{B}}|}}{{|\mathit{\boldsymbol{A}} \cup \mathit{\boldsymbol{B}}|}} $ (2)

式中,JI数值越大,表明重合度越高。

计算两个有向平均表面距离的平均值,即

$ ASD = \frac{{{\mathit{\boldsymbol{d}}_{H, {\rm{avg}}}}(\mathit{\boldsymbol{A}}, \mathit{\boldsymbol{B}}) + {\mathit{\boldsymbol{d}}_{H, {\rm{avg}}}}(\mathit{\boldsymbol{B}}, \mathit{\boldsymbol{A}})}}{2} $ (3)

式中,有向平均表面距离为$ \boldsymbol{A}$点到$ \boldsymbol{B}$点最近邻的平均距离,即

$ {\mathit{\boldsymbol{d}}_{H, {\rm{avg}}}}(\mathit{\boldsymbol{A}}, \mathit{\boldsymbol{B}}) = \frac{1}{{|\mathit{\boldsymbol{A}}|}}\sum\limits_{\left. {\left. {a \in } \right|\mathit{\boldsymbol{A}}} \right|} {\mathop {\min }\limits_{b \in |\mathit{\boldsymbol{B|}}} \mathit{\boldsymbol{d}}} (\mathit{\boldsymbol{a}}, \mathit{\boldsymbol{b}}) $ (4)

豪斯多夫距离为

$ \begin{aligned} H D(\boldsymbol{A}, \boldsymbol{B}) =\max (h(\boldsymbol{A}, \boldsymbol{B}), h(\boldsymbol{B}, \boldsymbol{A})) \end{aligned} $ (5)

$ h(\boldsymbol{A}, \boldsymbol{B}) =\max (\min \|\boldsymbol{a}-\boldsymbol{b}\|) $ (6)

式中,$a \in \mathit{\boldsymbol{A}}, \mathit{\boldsymbol{b}} \in \mathit{\boldsymbol{B}} $, 该指数计算两个等轮廓之间的表面距离。$ H D$值越小表示$ \boldsymbol{A}$$ \boldsymbol{B}$之间的距离越近,即具有较高的分割精度。

1.5 统计分析

采用配对t检验比较不同模型间的DSC、JI、ASD和HD值,数据以平均值±标准差表示,p < 0.05表示显著性差异水平。所有分析均采用SPSS 23.0软件进行。

2 结果

图 3给出了本文所使用的Deeplabv3+卷积神经网络模型对鼻咽癌原发肿瘤GTVp的自动分割结果箱式图。方框的上下界分别代表第25和第75百分位数,误差条分别表示第10和第90百分位数。15例患者的平均DSC值为0.76±0.11,平均JI值为0.63±0.13,平均ASD值为3.4±2.0 mm,平均HD值为10.9±8.6 mm。Deeplabv3+网络模型的平均DSC值和JI值相比U-Net网络(Ronneberger等,2015)分别提升了3%~4%(0.76±0.11 vs 0.73±0.13, p < 0.001; 0.63±0.13 vs 0.59±0.14, p < 0.001)。ASD值相比U-Net结果,也有明显减小(3.4±2.0 vs 3.8±3.3 mm, p=0.014)。但对HD值,两种网络模型的结果无统计学的差异(10.9±8.6 vs 11.1±7.5 mm, p=0.745)。这表明Deeplabv3+网络模型对鼻咽癌靶区的分割效果优于U-Net网络模型。

图 3 两种网络结构分割GTVp的指标
Fig. 3 Boxplots of values from two different models
((a) DSC; (b) JI; (c) ASD; (d) HD)

图 4给出了测试集中3位患者的Deeplabv3+网络分割结果、U-Net分割结果以及临床医生手动勾画的可视化结果。其中红线代表手动勾画结果,绿线和蓝线分别代表Deeplabv3+和U-Net自动分割结果。从图中可以看出,Deeplabv3+网络模型的自动分割靶区轮廓和医生手动勾画的轮廓有更多的重合,即更接近“金标准”的结果。但同时也观察到,在某些CT图像层面,如图 4(c),自动分割结果与手动勾画差异较大。

图 4 3位NPC患者的Deeplabv3+和U-Net模型分割GTVp可视化图
Fig. 4 Segmentation visualizations for GTVp of three NPC patients by using DeeplabV3+ and U-Net model

训练200个轮次的Deeplabv3+和U-Net网络模型分别需要的时间为6.7 h和5 h。分割一幅CT图像所需的平均时间分别为16 ms和14 ms,耗时远低于临床医生手动勾画的时间(Kosmin等,2019)。

3 讨论

使用Deeplabv3+网络模型自动分割鼻咽癌患者原发肿瘤病灶GTVp,并与U-Net网络模型的结果进行了对比。研究结果表明,Deeplabv3+网络的自动分割结果更接近临床医生手动勾画的轮廓(平均DSC: 0.76;平均JI: 0.63;平均ASD: 3.4 mm; 平均HD: 10.9 mm)。从图 4可以看出,自动分割与手动勾画结果差异最大的地方在于缺乏软组织对比度的靶区前后界。

精准的肿瘤靶区勾画对于最大限度提升肿瘤控制率和降低放疗毒性至关重要。鼻咽癌放疗中的GTVp靶区,在CT图像上缺乏软组织对比度,因此肿瘤与正常组织界面的定义很模糊,这使得基于CT的靶区勾画成为一项挑战性的任务,尤其是对初级医师而言。即使是经验丰富的肿瘤医生,其手动勾画靶区也存在变化。从这个角度来看,基于深度学习的自动分割可以发挥一定的作用。它可以通过学习由经验丰富的肿瘤医生手工绘制的大量轮廓来提高轮廓自动分割的一致性和准确性。深度学习的自动分割方法可以提供一个良好的起点,从而改进和最终确定轮廓。因此,将深度学习方法应用于放射治疗中的自动轮廓的研究越来越受到关注。例如,使用卷积神经网络对头颈部CT图像上放疗危及器官进行分割,DSC值从37.4%到89.5%不等(Ibragimov和Xing,2017)。针对头颈部危及器官提出了端到端全自动深度学习分割模型,并证明DSC平均为78.8%(Zhu等,2019)。Sun等人(2019)开发了一种先定位后分割的方法,用于CT图像中眼睛和周围器官的分割,获得了82.2% ~ 94%的DSC值。

至于鼻咽癌GTVp分割,Lin等人(2019)开发了一种3D CNN方法在MR图像中自动轮廓GTVp,并证明DSC值为0.79。Ma等人(2018)将卷积神经网络模型与3D图形裁剪方法相结合,在MR图像下得到DSC值为85.1%。可以看出,本文分割结果DSC值均低于相关文献结果,主要原因是训练使用的影像模态不同。MR影像具有较高的软组织分辨率和对比度,是临床评估和确定鼻咽癌分期的首要检查手段和诊断依据(中国鼻咽癌临床分期工作委员会,2017)。尽管如此,由于模拟定位和放疗剂量计算等原因,CT影像仍然是目前鼻咽癌放疗不可或缺的影像模态。

针对CT影像上鼻咽癌病灶与正常组织界面的不明确,且患者间肿瘤异质性的问题,利用Deeplabv3+网络模型进行原发肿瘤放疗靶区的自动分割。Deeplabv3+网络模型与U-Net模型相比,使用具有不同空洞率卷积层的空间金字塔结构捕获任意尺度的上下文信息。在主干网络中使用具有多种空洞率的深度分离卷积,扩大感受野,融合多尺度信息,从而更好适应肿瘤形状、大小的异质性,恢复清晰的分割目标边界。因此,Deeplabv3+网络模型在鼻咽癌原发肿瘤放疗靶区的分割准确性上表现更好。同时,由于分离卷积存在,Deeplabv3+能够在不损失模型分割准确性的前提下降低计算量。

本文方法虽然取得了不错的分割精度,但仍存在一定的局限性。1)训练和验证数据集样本只有135例患者,增加训练数据集可以进一步提高准确性和鲁棒性。2)尽管所有的临床医生都按照相同的指南勾画,但仍不可避免地存在勾画的差异性。3)临床医生手动勾画GTVp靶区的轮廓时均使用与CT融合后的MR图像,考虑到MR图像在软组织成像对比度方面的优势,可以将MR图像加入网络的输入中,从而进一步提高分割效果。

4 结论

本文使用Deeplabv3+网络模型来自动分割鼻咽癌放疗患者的原发肿瘤病灶GTVp。与U-Net模型相比,Deeplabv3+网络模型使用新型编码-解码结构和带孔空间金字塔网络结构提升了分割精度。该自动分割模型虽然有望提高GTVp勾画的的效率和一致性,但其DSC值仍然较低,医生在临床实践中需仔细审核自动分割结果。

致谢 本文涉及的临床数据得到了安徽省立医院放疗科李广虎、刘伟和冉晶晶医生的大力支持,在此表示衷心的感谢。

参考文献

  • Chen L C, Zhu Y K, Papandreou G, Schroff F and Adam H. 2018. Encoder-decoder with Atrous separable convolution for semantic image segmentation//Proceedings of the 15th European Conference on Computer Vision. Martial Hebert: Springer: 1-11[DOI: 10.1007/978-3-030-01234-2_49]
  • Chinese Committee for Staging of Nasopharyngeal Carcinoma. 2017. The 2017 edition for staging of nasopharyngeal carcinoma in China (The Chinese 2008 expert consensus on staging revision of nasopharyngeal carcinoma). Chinese Journal of Radiation Oncology, 26(10): 1119-1125 (中国鼻咽癌临床分期工作委员会. 2017. 中国鼻咽癌分期2017版(2008鼻咽癌分期修订专家共识). 中华放射肿瘤学杂志, 26(10): 1119-1125) [DOI:10.3760/cma.j.issn.1004-4221.2017.10.002]
  • Delpon G, Escande A, Ruef T, Darreéon J, Fontaine J, Noblet C, Supiot S, Lacornerie T, Pasquier D. 2016. Comparison of automated atlas-based segmentation software for postoperative prostate cancer radiotherapy. Frontiers in Oncology, 6: #178 [DOI:10.3389/fonc.2016.00178]
  • Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin D M, Piñeros M, Znaor A, Bray F. 2019. Estimating the global cancer incidence and mortality in 2018:GLOBOCAN sources and methods. International Journal of Cancer, 144(8): 1941-1953 [DOI:10.1002/ijc.31937]
  • Gulli A and Pal S. 2017. Deep Learning with Keras.[s.l.]: Packt Publishing
  • Han S, Kang H K, Jeong J Y, Park M H, Kim W, Bang W C, Seong Y K. 2017. A deep learning framework for supporting the classification of breast lesions in ultrasound images. Physics in Medicine and Biology, 62(19): 7714-7728 [DOI:10.1088/1361-6560/aa82ec]
  • Ibragimov B, Xing L. 2017. Segmentation of organ-at-risks in head and neck CT images using convolutional neural networks. Medical Physics, 44(2): 547-557 [DOI:10.1002/mp.12045]
  • Kosmin M, Ledsam J, Romera-Paredes B, Mendes R, Moinuddin S, de Souza D, Gunn L, Kelly C, Hughes C O, Karthikesalingam A, Nutting C, Sharma R A. 2019. Rapid advances in auto-segmentation of organs at risk and target volumes in head and neck cancer. Radiotherapy and Oncology, 135: 130-140 [DOI:10.1016/j.radonc.2019.03.004]
  • Lin L, Dou Q, Jin Y M, Zhou G Q, Tang Y Q, Chen W L, Su B A, Liu F, Tao C J, Jiang N, Li J Y, Tang L L, Xie C M, Huang S M, Ma J, Heng P A, Wee J T S, Chua M L K, Chen H, Sun Y. 2019. Deep learning for automated contouring of primary tumor volumes by MRI for nasopharyngeal carcinoma. Radiology, 291(3): 677-686 [DOI:10.1148/radiol.2019182012]
  • Litjens G, Kooi T, Bejnordi B E, Setio A A A, Ciompi F, Ghafoorian M, Van der laak J A W M, Van Ginneken B, Sánchez C I. 2017. A survey on deep learning in medical image analysis. Medical Image Analysis, 42: 60-88 [DOI:10.1016/j.media.2017.07.005]
  • Ma Z Q, Wu X, Song Q, Luo Y, Wang Y, Zhou J L. 2018. Automated nasopharyngeal carcinoma segmentation in magnetic resonance images by combination of convolutional neural networks and graph cut. Experimental and Therapeutic Medicine, 16(3): 2511-2521 [DOI:10.3892/etm.2018.6478]
  • Men K, Chen X Y, Zhang Y, Zhang T, Dai J R, Yi J L, Li Y X. 2017. Deep deconvolutional neural network for target segmentation of nasopharyngeal cancer in planning computed tomography images. Frontiers in Oncology, 7: #315 [DOI:10.3389/fonc.2017.00315]
  • Ng W T, Lee M C H, Chang A T Y, Chan O S H, Chan L L K, Cheung F Y, Hung W M, Chan C C C, Lee A W M. 2014. The impact of dosimetric inadequacy on treatment outcome of nasopharyngeal carcinoma with IMRT. Oral Oncology, 50(5): 506-512 [DOI:10.1016/j.oraloncology.2014.01.017]
  • Ronneberger O, Fischer P and Brox T. 2015. U-net: convolutional networks for biomedical image segmentation//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany: Springer: 234-241[DOI: 10.1007/978-3-319-24574-4_28]
  • Sun Y, Shi H B, Zhang S, Wang P, Zhao W L, Zhou X B, Yuan K H. 2019. Accurate and rapid CT image segmentation of the eyes and surrounding organs for precise radiotherapy. Medical Physics, 46(5): 2214-2222 [DOI:10.1002/mp.13463]
  • Zhu W T, Huang Y F, Zeng L, Chen X M, Liu Y, Qian Z, Du N, Fan W, Xie X H. 2019. AnatomyNet:deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Medical Physics, 46(2): 576-589 [DOI:10.1002/mp.13300]