Print

发布时间: 2020-07-16
摘要点击次数:
全文下载次数:
DOI: 10.11834/jig.190344
2020 | Volume 25 | Number 7




    图像处理和编码    




  <<上一篇 




  下一篇>> 





gyrator变换域的高鲁棒多图像加密算法
expand article info 王丰1, 邵珠宏1,2, 王云飞3, 姚启钧4, 刘西林5
1. 首都师范大学信息工程学院, 北京 100048;
2. 北京成像理论与技术高精尖创新中心, 北京 100048;
3. 首都师范大学物理系, 北京 100048;
4. 首都师范大学化学系, 北京 100048;
5. 太原理工大学大数据学院, 太原 030600

摘要

目的 随着互联网通信和多媒体技术的快速发展,单幅图像加密技术难以满足日益增长的数据传输需求。为提高图像加密系统的传输效率,同时保证安全性和鲁棒性,本文构建一种基于gyrator变换和多分辨率奇异值分解(multi-resolution singular value decomposition,MRSVD)的多图像加密算法。方法 首先,将明文图像每两幅组合为复数矩阵,利用改进的logistic映射生成混沌相位掩模,对复数矩阵进行gyrator域的双随机相位编码。其次,将变换后矩阵的实部分量和虚部分量组合为实数矩阵并进行多分辨率奇异值分解。最后,使用正交系数矩阵对多分辨率奇异值分解的结果进行线性组合得到密文图像。结果 实验结果表明,使用本文算法得到的解密图像的峰值信噪比大于300 dB,解密图像质量相较于对比算法的解密图像质量更好;密钥发生微小改变前后密文相关系数(correlation coefficient,CC)远小于0.20,明文像素值发生微小变化时像素变化率(number of pixels change rate,NPCR)与归一化平均变化强度(unified average changing intensity,UACI)分别约为0.999 0和0.333 7;密钥空间大小为5.616 9×1060,可以抵御蛮力攻击;当密文图像受到一定强度的高斯白噪声和剪切攻击时,本文算法能够较好地恢复明文图像。结论 所提出的多图像加密算法在高质量恢复明文图像的同时具有较高的安全性和较强的鲁棒性,可以应用于图像的内容保护与安全传输。

关键词

多图像加密; gyrator变换; 多分辨率奇异值分解; 改进的logistic映射; 双随机相位编码

Multiple image encryption of high robustness in gyrator transform domain
expand article info Wang Feng1, Shao Zhuhong1,2, Wang Yunfei3, Yao Qijun4, Liu Xilin5
1. College of Information Engineering, Capital Normal University, Beijing 100048, China;
2. Beijing Advanced Innovation Center for Imaging Theory and Technology, Beijing 100048, China;
3. Department of Physics, Capital Normal University, Beijing 100048, China;
4. Department of Chemistry, Capital Normal University, Beijing 100048, China;
5. College of Data Science, Taiyuan University of Technology, Taiyuan 030600, China
Supported by: National Natural Science Foundation of China (61876112, 61601311)

Abstract

Objective The rapid development of the Internet communication and multimedia technology has allowed the convenient transmission of substantial video, image, and other multimedia data through networks at any moment. On the one hand, these data may be leaked in the transmission process and illegally used due to the openness and sharing of the internet. On the other hand, several images may contain sensitive information, such as human body images that can potentially reveal the privacy information of one person, including gender, weight, and health status. Remote sensing images may include important information, such as geographical location, sensor parameters, and the spectral characteristics of ground objects. Therefore, the protection of image content and secure communication have become important issues in the field of information security. Since the double random phase encoding (DRPE) was proposed, numerous encryption schemes, such as fractional Fourier transform, gyrator transform, Fresnel transform, and multiparameter discrete fractional Fourier transform, have been introduced in other domains. The majority of such algorithms focus on a single image. Multi-image encryption technology has been widely investigated in recent years to meet the growing demand for data transmission. This paper introduces a multi-image encryption algorithm based on gyrator transform and multiresolution singular value decomposition (MRSVD). Method First, every two images are combined into a complex matrix by precoding and then DRPE in the gyrator domain is performed, where chaotic phase masks are constructed using a modified logistic map. Second, the real and imaginary parts of the transformed results are spliced into a real matrix. MRSVD is implemented to improve the security. With a given mean and variance values, a Gaussian matrix is generated and an orthogonal coefficient matrix is obtained by singular value decomposition. Cipher images are obtained by linear combination of the MRSVD results. Plaintext images can be recovered using an authorized key through the reverse encryption process. The phase masks, rotation angles of gyrator transforms, and parameter of Gaussian matrix are generated by using the modified logistic map, which makes the storage and transmission convenient. The initial states of the modified logistic map are closely related to plaintext images, and this condition results in high-level security. Result Numerical simulations are performed on 120 grayscale images to demonstrate the feasibility and reliability of the proposal. The peak signal-to-noise ratio (PSNR) values of the decrypted images by using the proposed method with granted keys are larger than 300 dB. This result indicates that the quality of the decrypted images by using the proposed method is better than that obtained using other methods. The histograms of cipher images obey the Gaussian distribution, which is different from the results of plaintext images. The correlation coefficient value of cipher images is much less than 0.20 when keys are slightly changed. The decrypted results with a key that deviates from the correct value of 10-15 are chaotic. The average PSNR value is approximately 8.516 1 dB, and the average structural similarity is close to 0. When the pixel values of plaintext images increase by a small amount, the average number of pixel change rate and the unified average changing intensity are approximately 0.999 0 and 0.333 7, respectively. The key space is up to 5.616 9×1060, which can resist a brute force attack. For the cipher images attacked by Gaussian white noise and cropping, the proposed algorithm can still recover plaintext images and shows better robustness than two other algorithms. Conclusion A multilevel multi-image encryption approach based on gyrator transform and MRSVD is proposed in this study. The chaotic random phase masks and real-valued cipher image is convenient to storage and transmit. The identity orthogonal matrix obtained by singular value decomposition is utilized to share the MRSVD results. Such utilization increases the security of ciphertext. Experimental results demonstrate that the proposed method can restitute plaintext images with high quality and achieves high security and strong robustness. It can be applied for the protection of image content and secure communication.

Key words

multi-image encryption; gyrator transform; multi-resolution singular value decomposition(MRSVD); modified logistic map; double random phase encoding

0 引言

随着互联网通信和多媒体技术的迅速发展,每时每刻都有大量的视频、图像等信息通过网络进行传输。由于网络的公开性和共享性,这些数据可能在传输过程中泄露和被非法使用,其中某些图像包含敏感信息,如人体图像可以潜在反映性别、体重、健康状况等生物特征隐私信息(Jiang和Guo,2019),遥感图像中包括地理位置、传感器参数、地物光谱特征等重要信息(刘禹佳等,2019)。而通过3D打印技术制作石膏人脸已经可以成功破解4种流行旗舰手机的人工智能(artificial intelligence,AI)人脸识别解锁功能(Brewster,2018)。因此,对图像内容的保护已成为信息安全领域的重要问题之一。

自双随机相位编码技术被提出以来,图像加密已成为保护图像内容的一种有效方法(Liu等,2014Guo等,2017Bao和Zhou,2015)。为了提高系统的安全性,研究者在双随机相位编码(double random phase encooling, DRPE)框架的基础上,通过引入含随机变化参数的变换构建新的加密算法,如菲涅尔变换(Luan等,2019Yadav和Singh,2018)、离散分数阶随机变换(Gong等,2018)、多参数的离散分数阶傅里叶变换(Azoug和Bouguezel,2016Bhatnagar等,2014)等。姚丽莉等人(2016)利用矢量分解和gyrator变换相结合实现非对称图像加密。陈艳浩等人(2019)构建了一种基于差异混合掩码与混沌gyrator变换的光学图像加密算法,提高了光学加密技术在抗选择明文攻击能力时的解密质量。但是,这些图像加密算法主要针对单幅图像。

图像信息储存和传输数据量的急剧增加使得多图像加密技术得到广泛关注(Xi等,2019Wang和Zhao,2012Bhatnagar等,2013Deepan等,2014Shao等,2018王仁德等,2019Sui等,2019)。Wang和Zhao(2012)提出一种基于相干叠加原理和数字全息的光电图像加密解密技术,实现多图像加密。Bhatnagar等人(2013)提出离散分数阶小波域(discrete fractional wavelet transform,DFrWT)的双随机相位编码,并构造系数矩阵将多组变换后矩阵组合实现多图像加密,但在明文图像数量$n$≥ 4时,存在幻方矩阵行列式为0的情况,无法实现解密。Deepan等人(2014)将压缩感知技术应用到双随机相位空间多路复用技术中实现多图像加密。Shao等人(2018)提出一种基于混沌映射和gyrator域幅值相位混合恢复的实值图像加密系统,实现双灰度图像加密。王仁德等人(2019)对光学扫描全息术进行了改进,实现多图像并行加密和任意层图像的再现。Sui等人(2019)提出利用级联分数阶傅里叶变换(cascaded fractional Fourier transform,CFrFT)实现多图像加密,解决了频域加密出现的轮廓问题,然而存在随级联层数增加,解密图像质量逐渐降低的问题。

基于以上分析,本文使用gyrator变换和多分辨率奇异值分解构建了一种多图像加密算法。其中,gyrator变换的旋转角度参数可随机选取,多分辨率奇异值分解具有多尺度适应性,使得加密系统具有较高的安全性。混沌序列与明文图像密切相关,使得算法能够有效抵抗选择明文攻击。实验仿真表明,本文算法能够实现多幅图像的加密和解密,解密图像具有较高的峰值信噪比和良好的稳健性。

1 理论基础

1.1 改进的logistic映射

基于传统logistic映射,Hanis和Amutha(2019)提出一种改进的logistic映射,定义为

$ {Z_{n + 1}} = \mu {Z_n}(1 - {Z_n})(1 - Z_n^2) $ (1)

式中,0 < ${Z_n}$ < 1,3.9 < $\mu $ < 6.27,此时改进的logistic映射为混沌状态。通过与传统logistic映射比较,改进的logistic映射由于混沌控制参数$\mu $范围变大,密钥空间扩大,有利于提高系统的安全性。

1.2 gyrator变换

对于一幅灰度图像$f\left({x, y} \right)$,旋转角度为$\alpha $的gyrator变换的定义(Rodrigo,2007)为

$ \begin{array}{*{20}{c}} {G(u,v) = \int {\int {f(x,y)} } {K_\alpha }(x,y;u,v){\rm{d}}x{\rm{d}}y = }\\ {\frac{1}{{|{\rm{sin}}\alpha |}}\int {\int {f(x,y)} } \times }\\ {{\rm{exp}}\left( {{\rm{i}}2\pi \frac{{(uv + xy){\rm{cos}}\alpha - (uy + vx)}}{{{\rm{sin}}\alpha }}} \right){\rm{d}}x{\rm{d}}y} \end{array} $ (2)

式中,$\left({x, y} \right)$$\left({u, v} \right)$分别表示输入和输出坐标, i为虚数单位。对gyrator变换的结果再进行一次角度为$ - \alpha $的gyrator变换,可以得到原图像$f\left({x, y} \right)$

1.3 多分辨率奇异值分解

$\mathit{\boldsymbol{X}}$表示一幅2维灰度图像,尺寸为$M{\rm{ \times }}N$,多分辨率奇异值分解(multi-resolution singular value decomposition,MRSVD)(Bhatnagar等人,2014)的具体过程描述如下:

1) 将图像$\mathit{\boldsymbol{X}}$划分为大小为$p{\rm{ \times }}q$的非重叠子块并调整为$pq{\rm{ \times }}1$的向量,按列组成$pq{\rm{ \times }}\left({MN/pq} \right)$的矩阵${\mathit{\boldsymbol{X}}_1}$

2) 计算中心化矩阵和散布矩阵${\mathit{\boldsymbol{T}}_1} = {{\mathit{\boldsymbol{\bar X}}}_1}\mathit{\boldsymbol{\bar X}}_1^{\rm{T}}$

3) 令${\mathit{\boldsymbol{U}}_1}$为特征向量矩阵,将散布矩阵${\mathit{\boldsymbol{T}}_1}$对角化,$\mathit{\boldsymbol{U}}_1^{\rm{T}}{\mathit{\boldsymbol{T}}_1}{\mathit{\boldsymbol{U}}_1} = \mathit{\boldsymbol{S}}_1^2$,其中,$\mathit{\boldsymbol{S}}_1^2$=diag{${s_1}{\left(1 \right)^2}, {s_1}{\left(2 \right)^2}, \cdots, {s_1}{\left({pq} \right)^2}$}为矩阵${\mathit{\boldsymbol{T}}_1}$奇异值的平方。

4) 重构矩阵${\mathit{\boldsymbol{\hat X}}}$$\mathit{\boldsymbol{\hat X}} = \mathit{\boldsymbol{U}}_1^{\rm{T}}{{\mathit{\boldsymbol{\bar X}}}_1}$。矩阵${\mathit{\boldsymbol{\hat X}}}$的第1行对应最大的奇异值,因此将其作为${\mathit{\boldsymbol{\hat X}}}$的近似分量。图像的细节分量为${\mathit{\boldsymbol{\hat X}}}$的剩余行对应的剩余奇异值(按递减顺序排列)。图 1为一幅图像的多分辨率奇异值分解及重建结果,其中参数$p{\rm{ \times }}q$=2×2。

图 1 多分辨率奇异值分解及重建结果
Fig. 1 Results of multi-resolution singular value decomposition and reconstruction ((a) original image; (b) decomposition result; (c) reconstruction result)

2 本文算法

本文提出的多图像加密算法流程如图 2所示,首先将$k$幅明文图像每两幅组合为复数矩阵并进行双随机相位编码,然后将实部分量和虚部分量组合为实数矩阵并进行多分辨率奇异值分解,最后使用正交矩阵对多分辨率奇异值分解的结果进行线性组合得到密文图像。当使用授权的密钥,通过加密过程的逆过程可以恢复出明文图像。

图 2 图像加密流程
Fig. 2 The schematic of image encryption

假设待加密的明文图像分别为${f_r}\left({x, y} \right)$, $r$=1, 2, …, $k$,其大小均为$M{\rm{ \times }}N$,则加密过程具体描述如下:

1) 将$k$幅明文图像每两幅组合为复数矩阵${S_t}\left({x, y} \right)$, $t$=1, 2, …, $k$/2。令实部图像集为$\mathit{\boldsymbol{T}}$,虚部图像集为${\mathit{\boldsymbol{T'}}}$,分别计算两个实数值${X_{0}}$, ${X_{1}}$,相应的表达式为

$ {{X_0} = \frac{2}{k}\sum\limits_{f \in \mathit{\boldsymbol{T}}} {\sum\limits_{i = 0}^{255} {f(i)} } \cdot H(i)} $ (3)

$ {{X_1} = \frac{2}{k}\sum\limits_{f \in {\mathit{\boldsymbol{T}}^\prime}} {\sum\limits_{i = 0}^{255} {f(i)} } \cdot H(i)} $ (4)

式中,$\mathit{\boldsymbol{H}}$(·)代表第$t$幅明文图像的灰度直方图分布。为了避免${X_{0}}$${X_{1}}$的数值过大,对${X_{0}}$${X_{1}}$分别进行取余运算,得到改进的logistic映射的初值${z_{0}}$${z_{1}}$,具体为

$ {{z_0} = {X_0}(\,{\rm{mod}}1)} $ (5)

$ {{z_1} = {X_1}(\,{\rm{mod}}1)} $ (6)

根据式(1),经过$MN$+1次迭代生成序列${{\mathit{\boldsymbol{Z'}}}_n}$${{\mathit{\boldsymbol{Z''}}}_n}$。将${{\mathit{\boldsymbol{Z'}}}_n}$${{\mathit{\boldsymbol{Z''}}}_n}$的前$MN$个元素分别调整为$M{\rm{ \times }}N$的矩阵${\mathit{\boldsymbol{R}}_1}$${\mathit{\boldsymbol{R}}_2}$,则混沌相位掩码表示为${\mathit{\boldsymbol{P}}_1} = {{\rm{e}}^{{\rm{i \mathsf{ π} }}{\mathit{\boldsymbol{R}}_1}}}$${\mathit{\boldsymbol{P}}_2} = {{\rm{e}}^{{\rm{i \mathsf{ π} }}{\mathit{\boldsymbol{R}}_2}}}$

2) 对复数矩阵${S_t}\left({x, y} \right)$, $t$=1, 2, …, $k$/2进行角度分别为$\alpha $$\beta $的gyrator变换得到矩阵${g_t}\left({u, v} \right)$,即

$ {\mathit{\boldsymbol{g}}_t} = {G^\beta }\{ {G^\alpha }\{ {\mathit{\boldsymbol{S}}_t} \cdot {\mathit{\boldsymbol{P}}_1}\} \cdot {\mathit{\boldsymbol{P}}_2}\} $ (7)

式中,$G${·}代表对矩阵进行gyrator变换,$\alpha = {{\mathit{\boldsymbol{Z'}}}_{NM + 1}}$$\alpha = {{\mathit{\boldsymbol{Z''}}}_{NM + 1}}$

3) 分别提取矩阵${g_t}\left({u, v} \right)$的实部分量和虚部分量,并将其重新组合为实数矩阵${A_t}\left({x', y'} \right)$,即

$ {\mathit{\boldsymbol{A}}_t} = \left[ {\begin{array}{*{20}{c}} { Re ({\mathit{\boldsymbol{g}}_t})}&{ Im ({\mathit{\boldsymbol{g}}_t})}\\ { - Im ({\mathit{\boldsymbol{g}}_t})}&{ Re ({\mathit{\boldsymbol{g}}_t})} \end{array}} \right] $ (8)

式中,运算符$Re($·)和$Im$(·)分别表示提取复数矩阵的实部和虚部。

4) 对矩阵${A_t}\left({x', y'} \right)$进行参数为$\left({p, q} \right)$的多分辨率奇异值分解,结果记为${M_t}\left({x', y'} \right)$

5) 根据均值为$s$、方差为$\sigma $生成大小为$k$/2×$k$/2的高斯矩阵$\mathit{\boldsymbol{W}}$,并进行奇异值分解得到正交矩阵$\mathit{\boldsymbol{U}}$,具体为

$ \mathit{\boldsymbol{W}} = \mathit{\boldsymbol{US}}{\mathit{\boldsymbol{V}}^{\rm{T}}} $ (9)

6) 将$\mathit{\boldsymbol{U}}$作为系数矩阵,对${M_t}\left({x', y'} \right)$进行组合,计算式为

$ \begin{array}{*{20}{c}} {{\mathit{\boldsymbol{I}}_1} = \mathit{\boldsymbol{U}}(1,1){\mathit{\boldsymbol{M}}_1} + \mathit{\boldsymbol{U}}(1,2){\mathit{\boldsymbol{M}}_2} + \cdots + \mathit{\boldsymbol{U}}(1,k/2){\mathit{\boldsymbol{M}}_{k/2}}}\\ {{\mathit{\boldsymbol{I}}_2} = \mathit{\boldsymbol{U}}(2,1){\mathit{\boldsymbol{M}}_1} + \mathit{\boldsymbol{U}}(2,2){\mathit{\boldsymbol{M}}_2} + \cdots + \mathit{\boldsymbol{U}}(2,k/2){\mathit{\boldsymbol{M}}_{k/2}}}\\ \vdots \\ {{\mathit{\boldsymbol{I}}_{k/2}} = \mathit{\boldsymbol{U}}(k/2,1){\mathit{\boldsymbol{M}}_1} + \mathit{\boldsymbol{U}}(k/2,2){\mathit{\boldsymbol{M}}_2} + \cdots + }\\ {\mathit{\boldsymbol{U}}(k/2,k/2){\mathit{\boldsymbol{M}}_{k/2}}} \end{array} $ (10)

式中,${\mathit{\boldsymbol{I}}_1}$, ${\mathit{\boldsymbol{I}}_2}$, …, ${\mathit{\boldsymbol{I}}_{k/2}}$为密文。在加密过程中,混沌序列初值${z_{0}}$${z_{1}}$和参数$\mu $,旋转角度$\alpha $$\beta $,多分辨率奇异值分解的参数$\left({p, q} \right)$,高斯矩阵的参数$\left({s, \sigma } \right)$作为本文算法的密钥。

使用授权的密钥,通过上述加密的逆过程可以恢复得到明文图像。具体过程如下:

1) 使用克莱姆法则对密文求解得到多分辨率奇异值分解结果${{M'}_t}\left({x', y'} \right)$

2) 分别对${{M'}_t}\left({x', y'} \right)$进行参数为$\left({p, q} \right)$的多分辨率奇异值分解的逆过程得到${{A'}_t}\left({x', y'} \right)$

3) 根据${{A'}_t}\left({x', y'} \right)$计算得到复数矩阵${{g'}_t}\left({x, y} \right)$,其中${{A'}_t}\left({x', y'} \right)$分别按2 × 2等分为4个矩阵,记为

$ \mathit{\boldsymbol{A}}_t^\prime = \left[ {\begin{array}{*{20}{l}} {{\mathit{\boldsymbol{A}}_{11}}}&{{\mathit{\boldsymbol{A}}_{12}}}\\ {{\mathit{\boldsymbol{A}}_{21}}}&{{\mathit{\boldsymbol{A}}_{22}}} \end{array}} \right] $ (11)

${{g'}_t}\left({x, y} \right)$可以表示为

$ \mathit{\boldsymbol{g}}_t^\prime = \frac{{{\mathit{\boldsymbol{A}}_{11}} + {\mathit{\boldsymbol{A}}_{22}}}}{2} + {\rm{i}}\frac{{{\mathit{\boldsymbol{A}}_{12}} - {\mathit{\boldsymbol{A}}_{21}}}}{2} $ (12)

4) 对复数矩阵${{g'}_t}\left({x, y} \right)$进行角度分别为$ - \beta $, $- \alpha $的gyrator变换得到复数矩阵${{S'}_t}\left({x, y} \right)$

$ \mathit{\boldsymbol{S}}_t^\prime = {G^{ - \alpha }}\{ {G^{ - \beta }}\{ \mathit{\boldsymbol{g}}_t^\prime \cdot {\mathit{\boldsymbol{\bar P}}_1}\} \cdot {\mathit{\boldsymbol{\bar P}}_0}\} $ (13)

式中,$G$表示gyrator变换,{·}代表对矩阵取共轭。

5) 分别提取复数矩阵${{S'}_t}\left({x, y} \right)$的实部和虚部得到明文图像${{f'}_r}\left({x, y} \right)$

$ {\mathit{\boldsymbol{f}}_{2t - 1}^\prime = Re \{ \mathit{\boldsymbol{S}}_t^\prime \} } $ (14)

$ {\mathit{\boldsymbol{f}}_{2t}^\prime = Im \{ \mathit{\boldsymbol{S}}_t^\prime \} } $ (15)

3 实验结果分析

本文算法实验平台使用MATLAB 2015b,处理器为Intel(R)Core(TM)i5-6300HQ @2.30 GHz,内存为8 GB的Windows 10操作系统。分别从BSDS500(https://blog.csdn.net/u014722627/article/details/60140789)和Caltech101(http://www.vision.caltech.edu/Image_Datasets/Caltech101/)两个图像数据库中随机选取60幅图像进行实验,并将图像尺寸调整为256×256像素,6幅图像如图 3所示。改进的logistic映射的控制参数$\mu $=5.31,随机高斯矩阵的均值$s$=0.5、方差$\sigma $=1。

图 3 6幅测试图像
Fig. 3 Six tested images((a) tested image 1; (b) tested image 2; (c) tested image 3; (d) tested image 4; (e) tested image 5; (f) tested image 6)

3.1 加密和解密结果

为了客观评价解密图像的质量,使用峰值信噪比(peak signal to noise ratio,PSNR)、结构相似度(structural similarity index,SSIM)和相关系数(correlation coefficient,CC)作为评价指标。明文图像${f_r}\left({x, y} \right)$和解密图像${{f'}_r}\left({x, y} \right)$的PSNR、SSIM和CC分别计算为

$ P = 10{\rm{lg}}\left( {\frac{{{{255}^2}}}{{\frac{1}{{NM}}\sum\limits_{y = 0}^{N - 1} {\sum\limits_{x = 0}^{M - 1} {({f_r}(} } x,y) - f_r^\prime (x,y){)^2}}}} \right) $ (16)

$ {S = \frac{{(2{\mu _{{f_r}}}{\mu _{f_r^\prime }} + {c_1})(2{\sigma _{{f_r}f_r^\prime }} + {c_2})}}{{(\mu _{{f_r}}^2 + \mu _{f_r^\prime }^2 + {c_1})(\sigma _{{f_r}}^2 + \sigma _{f_r^\prime }^2 + {c_2})}}} $ (17)

$ {C = \frac{{E\{ [{\mathit{\boldsymbol{f}}_r} - E({\mathit{\boldsymbol{f}}_r})][\mathit{\boldsymbol{f}}_r^\prime - E(\mathit{\boldsymbol{f}}_r^\prime )]\} }}{{\sqrt {E\{ {{[{\mathit{\boldsymbol{f}}_r} - E({\mathit{\boldsymbol{f}}_r})]}^2}\} } \sqrt {E\{ {{[\mathit{\boldsymbol{f}}_r^\prime - E(\mathit{\boldsymbol{f}}_r^\prime )]}^2}\} } }}} $ (18)

式中,${\mu _{{f_r}}}$, ${\mu _{{{f'}_r}}}$分别表示图像${f_r}\left({x, y} \right)$${{f'}_r}\left({x, y} \right)$的均值,${\sigma _{{f_r}}}$, ${\sigma _{{{f'}_r}}}$分别表示图像${f_r}\left({x, y} \right)$${{f'}_r}\left({x, y} \right)$的标准差,${\sigma _{{f_r}{{f'}_r}}}$代表图像${f_r}\left({x, y} \right)$${{f'}_r}\left({x, y} \right)$的协方差,$c_1$$c_2$为常数;$E$表示期望值运算。根据定义,$P$的值越高,$S$$C$的值越接近1,表示解密图像质量越好。

首先通过实验分析多分辨率奇异值分解参数的选取对解密图像质量的影响,分别按照$p$×$q$={2×2, 2×4, 4×2, 4×4}对两个数据库的120幅图像进行实验,解密图像的PSNR结果如图 4(a)表 1所示。可以看出,当$p$×$q$=2×2时,解密图像峰值信噪比最高,解密图像质量最好。因此实验将多分辨率奇异值分解的参数设置为$p$×$q$=2×2。图 4(b)表 2为本文算法与DFrWT算法(Bhatnagar等,2013)、CFrFT算法(Sui等,2019)的PSNR对比结果,3种算法的SSIM和CC值均为1.000 0,可以看出本文算法解密图像的PSNR值明显高于其他两种算法对应的PSNR值,表明本文算法的解密图像质量更好。

图 4 正确解密时的PSNR对比结果
Fig. 4 Comparison results of PSNR with correct decryption((a) PSNR comparison using different parameter; (b) PSNR comparison of different algorithms)

表 1 不同参数算法正确解密时PSNR统计结果
Table 1 Statistical results of PSNR in different parameters under correct decryption

下载CSV
$p$× $q$最大值最小值均值
2 × 2312.837 3304.849 1309.209 8
2 × 4311.367 8304.313 1308.430 7
4 × 2311.479 6304.971 0308.468 6
4 × 4310.133 0303.901 3306.854 7
注:加粗字体为均值最优结果。

表 2 不同算法正确解密时PSNR统计结果
Table 2 Statistical results of PSNR in different algorithms under correct decryption 

下载CSV
/dB
算法最大值最小值均值
DFrWT233.582 8224.204 4228.547 7
CFrFT178.886 7175.369 7177.113 4
本文312.837 3304.849 1309.209 8
注:加粗字体为各列最优结果。

图 5给出了图 3所示明文图像的密文和正确解密结果,使用本文加密算法得到的密文图像信息混乱无序,攻击者难以从中直接获取有效信息。当使用授权的密钥时,能够正确恢复明文图像。使用本文算法对120幅图像进行测试,加密耗时22.92 s,解密耗时62.75 s。

图 5 密文和解密图像
Fig. 5 Cipherimages and decrypted results((a) cipherimage 1; (b) cipherimage 2; (c) cipherimage 3; (d) decrypted result 1; (e) decrypted result 2; (f) decrypted result 3; (g) decrypted result 4; (h) decrypted result 5; (i) decrypted result 6)

3.2 抗统计攻击性能分析

对加密算法的抗统计攻击性能分析,主要包括明文、密文的直方图和相邻像素的相关系数。图 6图 3所示明文图像及其密文图像的灰度直方图,不同明文图像的灰度直方图具有明显的峰值,而它们的密文图像直方图呈现很接近的高斯白噪声分布。因此,该算法能够将明文图像转化为高斯白噪声,隐藏明文图像的信息。

图 6 图 3图 5对应的直方图结果
Fig. 6 Results of histogram corresponding to Fig. 3 and Fig. 5((a) Fig. 3(a); (b) Fig. 3(b); (c) Fig. 3(c); (d) Fig. 5(a); (e) Fig. 5(b); (f) Fig. 5(c)))

一般而言明文图像的相邻像素之间具有很强的相关性,加密操作是尽可能破坏其相关性。随机从图 3所示的明文图像及图 5对应的密文图像中选取5 000对相邻像素点,这些相邻像素之间在水平、垂直、对角线方向上的相关系数如表 3所示,明文图像(图 3(a)(b))以及密文图像(图 5(a))的相邻像素相关分布如图 7所示。可以看出,明文图像相关系数接近于1.000 0,相关分布图中像素点分布在主对角线上,密文图像在3个方向上的相关系数接近于0。实验结果表明,本文算法可以有效破坏明文图像相邻像素之间的相关性。

表 3 明文图像及其密文图像相关系数
Table 3 Correlation coefficients of plaintext and cipher images

下载CSV
编号相关系数
水平垂直对角线
图 3(a)0.954 20.968 10.935 4
图 3(b)0.970 40.974 10.952 3
图 3(c)0.980 70.979 80.965 5
图 3(d)0.962 60.964 10.956 3
图 3(e)0.947 40.947 00.917 3
图 3(f)0.955 70.957 10.942 9
图 5(a)-0.029 8-0.042 60.009 1
图 5(b)-0.018 3-0.019 0-0.013 6
图 5(c)-0.042 3-0.018 50.035 4
图 7 相邻像素相关分布
Fig. 7 Correlation distribution of adjacent pixels ((a) Fig. 3(a); (b) Fig. 3(b); (c) Fig. 5(a))

3.3 算法敏感性分析

对算法敏感性进行3个方面的分析:1)使用存在微小变化的密钥对明文图像进行加密;2)使用存在微小变化的密钥对密文图像进行解密;3)明文发生微小变化时密文图像的差异性。

首先,使用微小变化的密钥对明文图像进行加密并分析密文的相关性。图 8给出了当初始值${z_{0}}$, ${z_{1}}$和参数$\mu $分别偏离10-15时加密的密文图像与使用初始密钥加密的密文图像相关系数,其数值不超过0.20。因此,密钥的微小改变会导致密文图像存在明显的差异,相关性很低。

图 8 初值或控制参数改变时的密文相关系数
Fig. 8 CC values of ciphertexts when the initial value or control parameter changes

其次,通过改变logistic映射的初值和控制参数进行解密,统计解密图像的PSNR和SSIM。当待测参数改变时,其余参数保持不变。图 9为初始值${z_{0}}$${z_{1}}$和参数$\mu $分别偏离正确值10-15时解密图像的PSNR和SSIM结果,其中,PSNR介于6.5~11.5 dB之间,SSIM的数量级为10-3,远小于使用正确密钥解密时的对应值。图 10给出了当初值或控制参数偏离正确值10-15图 5(a)-(c)的解密结果,可以看出此时的解密图像杂乱无序,无法从中获取有意义的明文内容。

图 9 初值或控制参数改变时解密图像的PSNR和SSIM
Fig. 9 PSNR and SSIM values when the initial value or control parameter changes ((a) PSNR; (b) SSIM)
图 10 初值或控制参数改变时的解密图像
Fig. 10 Decrypted images when the initial value or control parameter changes ((a) initial value $z_0$+10-15; (b) initial value $z_1$+10-15; (c) control parameter $\mu $+10-15)

此外,对明文图像像素变化的敏感性引入像素变化率(number of pixels change rate,NPCR)和归一化平均变化强度(unified averaged changed intensity,UACI)来进行客观评价,具体为

$ {D(i,j) = \left\{ {\begin{array}{*{20}{l}} 0&{{C_1} = {C_2}}\\ 1&{{C_1} \ne {C_2}} \end{array}} \right.} $ (19)

$ {{N_{PCR}} = \frac{1}{{MN}}\sum\limits_{i = 1}^M {\sum\limits_{j = 1}^N D } (i,j) \times 100\% } $ (20)

$ {{U_{ACI}} = \frac{1}{{MN}}\sum\limits_{i = 1}^M {\sum\limits_{j = 1}^N {\frac{{|{C_1}(i,j) - {C_2}(i,j)|}}{F}} } \times 100\% } $ (21)

式中,$M$$N$为密文图像的行数和列数,${C_{1}}$${C_{2}}$是有一个像素不同点的两个密文图像在$\left({i, j} \right)$处的像素值,$F$为密文图像最大像素值。

每幅明文图像任选一组像素点对像素值增加20,进行100次随机测试,NPCR和UACI的平均值如图 11所示。可以看出,明文像素值产生微小改变时,密文图像会发生很大的变化。这是由于本文混沌映射初值与明文图像密切相关,有利于保证系统的安全性。

图 11 NPCR和UACI平均值
Fig. 11 Average of NPCR and UACI

3.4 密钥空间

本文算法利用改进的logistic映射生成混沌相位掩码和旋转角度,密钥空间主要根据混沌映射来决定。改进的logistic映射有1个独立的控制参数$\mu $∈(3.9, 6.27)和2个初值$z_0$∈(0, 1),$z_1$∈(0, 1)。假设两个值的精度都设置为10-15,则密钥空间为(2.37×1015×1015)2=5.616 9×1060Ge等人(2019)指出抵抗蛮力攻击的密钥空间大小为2100,本文密钥空间大小明显大于该数值,可以抵御蛮力攻击。

3.5 抗选择明文攻击

为了测试本文算法抵抗选择明文攻击的能力,从Caltech101数据库选取6幅图像作为实验伪明文,如图 12(a)所示。假设攻击者利用伪明文产生对应的解密密钥,并对图 5(a)-(c)进行解密,结果如图 12(b)所示,解密图像杂乱无章,没有任何明文信息。本文的加密算法与明文密切相关,明文的改变会引起随机相位和旋转角度的不同。实验结果表明,本文算法可以抵御选择明文攻击。

图 12 选择明文攻击解密图像
Fig. 12 Decryption images of chosen-plaintext attack((a) pseudo plaintext images; (b) decryption results of Fig. 5(a)-(c))

3.6 鲁棒性分析

在数据传输过程中,密文数据可能出现噪声污染。为检验本文算法对噪声攻击的鲁棒性,对密文图像添加均值为0、方差(噪声强度)为δ的高斯白噪声,PSNR、SSIM的平均值结果如图 13所示,并与DFrWT算法(Bhatnagar等,2013)、CFrFT算法(Sui等,2019)的结果进行比较。可以看出,解密图像的质量均随着噪声强度的增大而不断降低,但是使用本文算法能够得到较高的PSNR和SSIM。图 14显示了高斯噪声强度$\delta $=9时,本文算法与DFrWT算法(Bhatnagar等,2013)、CFrFT算法(Sui等,2019)的解密结果。实验结果表明,本文算法对高斯噪声具有一定的鲁棒性,抗噪声攻击能力更强。

图 13 高斯噪声攻击结果
Fig. 13 Results of Gaussion noise attack ((a) comparison of average PSNR; (b) comparison of average SSIM)
图 14 高斯噪声($\delta $= 9)时的解密结果
Fig. 14 Decrypted results when the Gaussian noise $\delta $= 9 ((a) ours; (b) DFrWT; (c) CFrFT)

密文图像在传输过程中,可能会遭到破坏导致部分数据缺失。为了测试本文算法的抗剪裁能力,将密文中心分别剪切5%、10%、15%、20%、25%再进行解密,即将子块内像素点置0,解密图像的PSNR和SSIM平均值如图 15所示,并与DFrWT算法(Bhatnagar等,2013)和CFrFT算法(Sui等,2019)的结果进行比较。可以看出,本文算法在受到剪切攻击后,解密图像质量明显高于其他两种算法。图 16为3种算法在密文数据中心缺失5%后的解密图像。可以看出,本文算法在受到剪切攻击后,仍可恢复出明文信息并且更不易受到密文损失大小的影响。实验结果表明,本文算法具有更强的抗剪裁性。

图 15 剪切攻击结果
Fig. 15 Results of cropping attack ((a) comparison of average PSNR; (b) comparison of average SSIM)
图 16 剪裁攻击时的解密图像
Fig. 16 Decrypted images under cropping attack ((a) ours; (b) DFrWT; (c) CFrFT)

4 结论

提出一种结合gyrator变换和多分辨率奇异值分解的多图像加密算法。该算法得到的密文图像为实数值图像,相对于复数值的加密算法,密文的存储和分发更加便利。同时,使用奇异值分解得到的正交矩阵作为系数矩阵构建线性方程组得到密文图像。实验结果表明,本文算法能够实现多幅图像的加密和解密,并且可以高质量地恢复出原始图像,算法敏感性高,可有效抵抗蛮力攻击、选择明文攻击,并通过对比实验表明对高斯噪声以及剪切攻击具有较强的鲁棒性。

由于本文算法密文数量多,在未来的研究中将考虑如何降低密文的存储空间。同时将本文算法模型推广到多幅彩色图像的加密,增加算法的适用性。

参考文献

  • Azoug S E, Bouguezel S. 2016. A non-linear preprocessing for opto-digital image encryption using multiple-parameter discrete fractional Fourier transform. Optics Communications, 359: 85-94 [DOI:10.1016/j.optcom.2015.09.054]
  • Bao L, Zhou Y C. 2015. Image encryption:generating visually meaningful encrypted images. Information Sciences, 324: 197-207 [DOI:10.1016/j.ins.2015.06.049]
  • Bhatnagar G, Saha A, Wu Q M J, Atrey P K. 2014. Analysis and extension of multiresolution singular value decomposition. Information Sciences, 277: 247-262 [DOI:10.1016/j.ins.2014.02.018]
  • Bhatnagar G, Wu Q M J. 2014. Biometric inspired multimedia encryption based on dual parameter fractional Fourier transform. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 44(9): 1234-1247 [DOI:10.1109/TSMC.2014.2303789]
  • Bhatnagar G, Wu Q M J, Raman B. 2013. Discrete fractional wavelet transform and its application to multiple encryption. Information Sciences, 223: 297-316 [DOI:10.1016/j.ins.2012.09.053]
  • Brewster T. 2018. We broke into a bunch of Android phones with a 3D-printed head[EB/OL].[2018-12-13]. https://www.forbes.com/sites/thomasbrewster/2018/12/13/we-broke-into-a-bunch-of-android-phones-with-a-3d-printed-head/#510662081330
  • Chen Y H, Liu Z Y, Zhou L Y. 2019. Optical image encryption algorithm based on differential mixed mask and chaotic Gyrator transform. Journal of Electronics and Information Technology, 41(4): 888-895
  • 陈艳浩, 刘中艳, 周丽宴. 2019. 基于差异混合掩码与混沌Gyrator变换的光学图像加密算法. 电子与信息学报, 41(4): 888-895 [DOI:10.11999/JEIT180456]
  • Deepan B, Quan C, Wang Y, Tay C J. 2014. Multiple-image encryption by space multiplexing based on compressive sensing and the double-random phase-encoding technique. Applied Optics, 53(20): 4539-4547 [DOI:10.1364/AO.53.004539]
  • Ge R J, Yang G Y, Wu J S, Chen Y, Coatrieux G, Luo L M. 2019. A novel chaos-based symmetric image encryption using bit-pair level process. IEEE Access, 7: 99470-99480 [DOI:10.1109/ACCESS.2019.2927415]
  • Gong L H, Deng C Z, Pan S M, Zhou N R. 2018. Image compression-encryption algorithms by combining hyper-chaotic system with discrete fractional random transform. Optics and Laser Technology, 103: 48-58 [DOI:10.1016/j.optlastec.2018.01.007]
  • Guo C, Wei C, Tan J B, Chen K N, Liu S T, Wu Q, Liu Z J. 2017. A review of iterative phase retrieval for measurement and encryption. Optics and Lasers in Engineering, 89: 2-12 [DOI:10.1016/j.optlaseng.2016.03.021]
  • Hanis S, Amutha R. 2019. A fast double-keyed authenticated image encryption scheme using an improved chaotic map and a butterfly-like structure. Nonlinear Dynamics, 95(1): 421-432 [DOI:10.1007/s11071-018-4573-7]
  • Jiang M, Guo G D. 2019. Body weight analysis from human body images. IEEE Transactions on Information Forensics and Security, 14(10): 2676-2688 [DOI:10.1109/TIFS.2019.2904840]
  • Liu S, Guo C L, Sheridan J T. 2014. A review of optical image encryption techniques. Optics and Laser Technology, 57: 327-342 [DOI:10.1016/j.optlastec.2013.05.023]
  • Liu Y J, Xu X P, Xu J H, Jiang Z G, Li Y D. 2019. Remote sensing image encryption using vector operations and secondary image phase masks. Acta Photonica Sinica, 48(2): 0210002 [DOI:10.3788/gzxb20194802.0210002]
  • 刘禹佳, 徐熙平, 徐嘉鸿, 姜肇国, 李艳荻. 2019. 基于矢量运算和副像相位掩模的遥感图像加密技术. 光子学报, 48(2): 0210002 [DOI:10.3788/gzxb20194802.0210002]
  • Luan G Y, Li A C, Zhang D M, Wang D X. 2019. Asymmetric image encryption and authentication based on equal modulus decomposition in the Fresnel transform domain. IEEE Photonics Journal, 11(1): 6900207 [DOI:10.1109/JPHOT.2018.2886295]
  • Rodrigo J A, Alieva T, Calvo M L. 2007. Gyrator transform:properties and applications. Optics Express, 15(5): 2190-2203 [DOI:10.1364/OE.15.002190]
  • Shao Z H, Shang Y Y, Fu X Y, Yuan H M, Shu H Z. 2018. Double-image cryptosystem using chaotic map and mixture amplitude-phase retrieval in Gyrator domain. Multimedia Tools and Applications, 77(1): 1285-1298 [DOI:10.1007/s11042-016-4279-0]
  • Sui L S, Zhang X, Huang C T, Tian A L, Asundi A K. 2019. Silhouette-free interference-based multiple-image encryption using cascaded fractional Fourier transforms. Optics and Lasers in Engineering, 113: 29-37 [DOI:10.1016/j.optlaseng.2018.10.002]
  • Wang R D, Zhang Y P, Zhu X F, Wang F, Li C G, Zhang Y A, Xu W. 2019. Multi-section images parallel encryption based on optical scanning holographic cryptography technology. Acta Physica Sinica, 68(11): 114202
  • 王仁德, 张亚萍, 祝旭锋, 王帆, 李重光, 张永安, 许蔚. 2019. 基于光学扫描全息密码术的多图像并行加密. 物理学报, 68(11): 114202 [DOI:10.7498/aps.68.20190162]
  • Wang X G, Zhao D M. 2012. Fully phase multiple-image encryption based on superposition principle and the digital holographic technique. Optics Communications, 285(21/22): 4280-4284 [DOI:10.1016/j.optcom.2012.06.061]
  • Xi S X, Yu N N, Wang X L, Ying M, Dong Z, Zhu Q F, Wang W, Wang H Y. 2019. Optical encryption method of multiple-image based on θ modulation and computer generated hologram. Optics Communications, 445: 19-23 [DOI:10.1016/j.optcom.2019.03.072]
  • Yadav P L, Singh H. 2018. Enhancement of security using structured phase masked in optical image encryption on Fresnel transform domain. AIP Conference Proceedings, 1953(1): 140049 [DOI:10.1063/1.5033224]
  • Yao L L, Yuan C J, Qiang J J, Feng S T, Nie S P. 2016. Asymmetric image encryption method based on Gyrator transform and vector operation. Acta Physica Sinica, 65(21): 214203
  • 姚丽莉, 袁操今, 强俊杰, 冯少彤, 聂守平. 2016. 基于Gyrator变换和矢量分解的非对称图像加密方法. 物理学报, 65(21): 214203 [DOI:10.7498/aps.65.214203]